
A Closer Look at Different Difficulty Levels Code
Generation Abilities of ChatGPT

Dapeng Yan
Nanjing University of Aeronautics and Astronautics

dapeng.yan@nuaa.edu.cn

Zhipeng Gao∗
Zhejiang University

zhipeng.gao@zju.edu.cn

Zhiming Liu
Southwest University

zliu@nwpu.edu.cn

Abstract—Code generation aims to generate source code imple-
menting human requirements illustrated with natural language
specifications. With the rapid development of intelligent software
engineering, automated code generation has become a hot re-
search topic in both artificial intelligence and software engineer-
ing, and researchers have made significant achievements on code
generation. More recently, large language models (LLMs) have
demonstrated outstanding performance on code generation tasks,
such as ChatGPT released by OpenAI presents the fantastic
potential on automated code generation. However, the existing
studies are limited to exploring LLMs’ ability for generating
code snippets to solve simple programming problems, the task
of competition-level code generation has never been investigated.
The specifications of the programming competition are always
complicated and require the specific input/output format as well
as the high-level algorithmic reasoning ability. In this study,
we conduct the first large empirical study to investigate the
zero-shot learning ability of ChatGPT for solving competition
programming problems. Specifically, we warm up the design of
prompts by using the Human-Eval dataset. Then, we apply the
well-designed prompt to the competition-level code generation
dataset, namely APPS, to further explore the effectiveness of
using ChatGPT for solving competition problems. We collect
ChatGPT’s outputs on 5,000 code competition problems, the
evaluation results show that it can successfully pass 25.4%
test cases. By further feeding extra information (e.g, test failed
information) to ChatGPT, we observe that ChatGPT has the
potential to fix partial pass into a fully pass program. Moreover,
we investigate the solutions generated by LLMs and the existing
solutions, we find that it prefers to directly copy the code instead
of re-write when facing more difficult problems. Finally, we
evaluate the code quality generated by ChatGPT in terms of
“code cleanness”, we observe that the generated codes are with
small functions and file sizes, which are in line with the standard
of clean code.

Index Terms—code generation, program competition, Chat-
GPT, large language model, clean code

I. INTRODUCTION

In the context of continuous and agile iteration in software

development, there is a growing realization that historical code

can be reused to facilitate high-quality and efficient software

development [1]. Reusing clean and easy-to-read code can

streamline the entire development process and significantly

reduce the costs associated with later maintenance [2].

One prominent technology for code reusability is automatic

code generation, where code is automatically generated with

developers’ requirements by accessing vast code bases. The

∗Corresponding author.

recent research on intelligent code generation has witnessed a

surge, indicating its increasing significance in academia and

industry. Over the years, researchers have explored automatic

code generation using various technologies. For instance, Ling

et al. [3] employed natural language descriptions of specific

cards to automatically generate corresponding code definitions,

thus reducing developers’ time and effort writing card effects.

Building on the top of Ling et al.’s work, Yin et al. [4]

improved the approach by incorporating grammar modeling

of the target language as prior knowledge during training.

Contemporary, Iyer et al. [5] compressed all code idioms into

a simplified syntax tree with a depth of 2 to produce more

accurate code.

In 2020, Feng et al. introduced CodeBERT [6], a large-

scale bimodal pre-training model for multiple programming

languages, which gained the highest popularity at that occasion

in the field of intelligent code generation. CodeBERT is widely

used to encode input text or code, which is applied to various

downstream tasks, including code generation and retrieval.

Subsequently, Guo et al. [7] proposed GraphCodeBERT, which

incorporates word masking in text information and random

data node masking in the data flow graph of code to improve

downstream task performance efficiently. Towards the end of

2021, OpenAI released CodeX [8], a large-scale model pre-

trained on public datasets based on GPT-3. The Copilot 1

plug-in based on CodeX has become a benchmark for code

generation auxiliary tools. The HumanEval dataset proposed

in the CodeX paper also serves as a widely used benchmark

dataset for subsequent code generation tasks. Recently, Tian

et al. [9] conducted an empirical study to evaluate ChatGPT’s

capability as a programming assistant using two LeetCode

programming datasets. Contemporary, Nascimento et al. [9]

conducted an empirical investigation to compare the perfor-

mance of AI systems and software engineers.

Previous works in code generation have primarily focused

on simple code generation tasks but neglected the poten-

tial of large language models (LLMs), such as ChatGPT,

in solving complex coding problems, especially competition

programming problems. Moreover, their approaches often di-

rectly invoke ChatGPT’s APIs to solve problems, with limited

optimization methods and relatively simplistic or subjective

problem classifications in the dataset. Compared to solving

1https://github.com/features/copilot/

1887

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00096

20
23

 3
8t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

09
6

Authorized licensed use limited to: Zhejiang University. Downloaded on July 02,2024 at 11:24:12 UTC from IEEE Xplore. Restrictions apply.

Problem statement of Maximal Binary Matrix:

You are given matrix with n rows and n columns filled with

zeroes. You should put k ones in it in such a way that the resulting

matrix is symmetrical with respect to the main diagonal (the

diagonal that goes from the top left to the bottom right corner)

and is lexicographically maximal.

One matrix is lexicographically greater than the other if the first

different number in the first different row from the top in the first

matrix is greater than the corresponding number in the second one.

If there exists no such matrix then output -1.

Input example Output example

2 1 1 0

0 0

Fig. 1: Example of program competition problem statement.

straightforward coding problems like “find the maximum el-
ement from a list”, competition-level coding problems are

significantly more intricate, demanding a comprehensive un-

derstanding of algorithms, data structures, and optimization

techniques, etc., such as the example of competition pro-

gramming, the ‘‘Maximal Binary Matrix" Problem,

depicted in Figure 1. These challenges often involve multiple

steps and intricate problem-solving skills.

Given the vast capabilities of LLMs, such as ChatGPT, it

is reasonable to explore their potential in effectively solving

those challenging coding problems, potentially even outper-

forming experienced and skillful human coders. This paper

presents the first large-scale empirical study to investigate

ChatGPT’s ability2 to generate code solutions for coding

problems varying difficulty levels. Additionally, we explore

the potential of using feedback information to improve the

performance and quality of code generation. Specifically, we

collect ChatGPT outputs for 5,000 competition-level coding

problems and evaluate ChatGPT’s effectiveness in code gen-

eration from three key aspects: the accuracy of generated code

solutions, the similarity between generated code solutions and

the ground-truth ones, the overall code quality of the generated

solutions.

The main contributions of this work include:

• A preliminary study that reveals the significant impact of

a well-designed prompt on improving the accuracy of the

solution code generated by ChatGPT. With our re-designed

prompt, the accuracy of ChatGPT is increased from 48.1%

to 65.6% when applying the GPT-3.5 model.

• We conduct the first large-scale empirical study assessing

ChatGPT’s ability to solve competition-level coding prob-

lems. Using our well-designed prompt, we run ChatGPT on

the APPS dataset, comprising 5,000 competition problems

2https://openai.com/blog/chatgpt/

with varying difficulty levels. The experimental results in-

dicate that ChatGPT achieves a 13.1% strict accuracy in

solving competition-level problems, while its accuracy for

introductory problems is increased to 30.1%.

• We explore the potential of teaching ChatGPT to revise

partial pass solutions into fully passable ones by providing

additional information, such as failed test cases. Through

several rounds of interactions with ChatGPT, solutions gen-

erated by ChatGPT can be further optimized, even for the

most challenging competition problem.

• The similarity analysis between the accurate results provided

by ChatGPT and the ground truths reveals a higher propor-

tion of code reuse in the generated code, particularly for

more straightforward problems.

• We select measurable metrics from the “Clean Code” prin-

ciples to analyze the accurate solution codes generated by

ChatGPT, and the findings indicate overall high code quality.

Additionally, we provide a replication package [10] of this

study to facilitate other researchers.

The organization of this paper is as follows. Section II

describes the background of code generation. In Section III, we

present the key motivations and research questions that drive

our study. The details of our research approach are outlined

in Section IV. Section V presents the findings and results of

our study. In Section VII, we discuss the potential threats

to the validity of our work, while Section VIII provides an

overview of the key related works. Finally, in Section IX, we

draw conclusions and summarize the main contributions of

this paper.

II. BACKGROUND

Code generation has become a subject of significant aca-

demic interest due to its potential to enhance software devel-

opment automation. Numerous scholars discuss different code

generation methods, drawing from their professional expertise

and practical experience in automating the production of

highly accurate code.

The main concepts and fundamental components of code

generation methods can be categorized into three groups:

code generation methods combined with retrieval, approaches

linked with post-processing, and methods relying on code fea-

tures [11]. The first two categories are advancements over the

initial code generation methods. In contrast, the last category

can be subdivided into code generation methods based on

supervised learning and code generation methods based on

pre-training, depending on the employed paradigms.

In the code generation method based on code features, the

first approach is centered on supervised learning, and a com-

monly used model is the sequence-to-sequence model [12].

This model follows an encoder-decoder paradigm comprising

two main parts: the encoder and the decoder. For instance, in

2019, Sun et al. [13] introduced a grammar-based structured

Convolutional Neural Network (CNN) that completes code

generation tasks by adhering to grammatical construction rules

within the abstract syntax tree. Similarly, in the same year,

Wei et al. [14] adopted a dual-task learning approach to

1888

Authorized licensed use limited to: Zhejiang University. Downloaded on July 02,2024 at 11:24:12 UTC from IEEE Xplore. Restrictions apply.

enhance code generation and code summarization performance

simultaneously.

The second category involves the use of pre-training models.

This approach entails pre-training the model on a large-scale

unlabeled dataset and fine-tuning it on a downstream labeled

dataset using the pre-trained representation. Nijkamp et al.

[15] released the CodeGEN pre-training model, boasting a

substantial 16.1B model parameters. It underwent training on

three datasets: THEPILE3, BIGQUERY 4, and BIGPYTHON.

The use of this pre-training model led to significant perfor-

mance improvements in code generation compared to single-

round methods, effectively validating the effectiveness of the

conversational code generation paradigm. InCoder [16], on

the other hand, departed from the traditional left-to-right

code generation pre-training model paradigm. It introduced

a generative model that could perform program synthesis

(by generating from left to right) and editing (by masking

and filling), leveraging bidirectional context to enhance code

generation task performance significantly.

The code generation method combined with retrieval in-

volves aiding the decoder in generating code by retrieving sim-

ilar codes, thereby reducing the decoding space and ultimately

enhancing the quality of the generated code [17]–[20]. Hayati

et al. [17] were the first to introduce retrieval technology into

the code generation task, proposing the “RECODE” model.

This model used the sequence of generated behaviors to alter

the probability of specific behaviors of syntax tree construction

in the final decoding process, resulting in improved model

performance. Xu et al. [18] addressed the lack of natural

language annotations and code data by utilizing the best-

performing “TRANX” model [19]. They incorporated two

external knowledge bases for data enhancement, aiding the

model in pre-training and improving its performance.

The combined with post-processing approach relies on

large-scale pre-trained language models. The critical focus

is testing the model generation process and the generated

results using test samples to improve performance [21]–[23].

Some works directly utilize test examples to enhance the

model’s performance. Jain et al. [21] introduced a post-

processing module to conventional large-scale pre-trained lan-

guage models. This module checks the syntax and semantics

of the code, ensuring that the generated code successfully

passes test samples and other quality checks. Despite ongoing

advancements in code generation models, most deep learning-

based methods still struggle to guarantee the compilabil-

ity of generated code. To address this issue, Wang et al.

[22] proposed “COMPCODER,” a method that enhances the

model’s ability to generate compilable code. They employ

compilation signals novelty and design a new approach to train

generators and discriminators for compilable code generation

tasks simultaneously.

In contrast to the works mentioned above, our empirical

study investigates the code generation ability of a large model

3https://pile.eleuther.ai/
4https://cloud.google.com/bigquery

TABLE I: Experimental results with HumanEval.
Dataset Count No Response Fail Pass Pass ratio

Human-eval 164 5 51 108 65.6%

(ChatGPT) using a more complex natural language dataset.

Additionally, we integrate an automatic repair process into the

code generation flowchart, optimizing the accuracy of solution

codes to ensure they pass all test cases. Our analysis also

includes an assessment of the quality of these generated codes.

III. PRELIMINARY STUDY

Before conducting the sizeable empirical study on

competition-level code generation tasks, we conducted a pre-

liminary study on the widely-studied dataset HumanEval [8]

that comprises 164 Python programming questions, and each

of them consists of a function header, a function body, and

several test cases (averaging 7.7 test cases per question).

These questions assess language understanding, algorithms,

and simple mathematics, resembling basic programming in-

terview questions. To make ChatGPT understand the given

questions better and generate code solutions in batches, we

optimize the prompt design and invoke ChatGPT’s API to

automatically generate code solutions by asking it with an

additional sentence at the front of each question: “Please

generate the Python solution code for the following question.”

Subsequently, we use the test suits in HumanEval to validate

whether the generated code solutions can successfully pass all

tests. The experimental results are presented in Table I.

In this experiment, we set the temperature of ChatGPT as

0 to ensure that the generated code solutions are consistent.

The results show that ChatGPT achieves an accuracy rate of

65.6%, significantly surpassing the 48.1% accuracy reported

by OpenAI [24] for the same model. This observation high-

lights the substantial impact of employing a suitable prompt

in enhancing the accuracy of generating code solutions with

ChatGPT.

Inspired by the potential of ChatGPT in solving simple
programming problems, we embark on an exploration
to determine how developers can effectively collaborate
with LLMs. To achieve this, it is essential to understand
the code generation capabilities and limitations of LLMs
(e.g., correctness and code quality) for simple code and
complex coding tasks. Competition-level coding problems
encompass various categories such as number theory,
graph theory, algorithmic game theory, data structures,
computational geometry, and string analysis, demanding
a significantly higher level of cognitive reasoning and
problem-solving proficiency.

IV. METHODOLOGY

This section presents the research questions, object selec-

tion, and measurement selection to explore the capability of

ChatGPT in generating code for solving competition-level

problems.

1889

Authorized licensed use limited to: Zhejiang University. Downloaded on July 02,2024 at 11:24:12 UTC from IEEE Xplore. Restrictions apply.

A. Research Questions

Our investigation addresses the following research questions

(RQs):

• RQ-1. To what extent can ChatGPT automatically gener-
ate accurate code for solving complex competition prob-
lems? ChatGPT can automatically generate program code

based on prompts describing programming tasks. We focus

on assessing the accuracy of ChatGPT in generating the

correct code for solving competition-level problems.

• RQ-2. Are solutions generated by ChatGPT comparable to
ground truth at different difficulty levels? We investigate

the generation habits of ChatGPT by examining the simi-

larity between strict accurate codes generated by ChatGPT

and the ground truth for problems with varying difficulty

levels.

• RQ-3. How clean is the code generated by ChatGPT?
We examine whether ChatGPT can automatically generate

clean code efficiently, addressing developers’ need for high-

quality code generation.

B. Object Selection

Model Selection. Language models pre-trained on large-

scale corpora have demonstrated impressive capabilities in

solving various natural language processing tasks. Researchers

have explored the scaling effect by increasing the model’s

scale and found that larger language models possess signif-

icantly greater capacity and outperform small-scale models,

such as BERT [25], [26]. The continuous advancements in

large language models have been boosted by academia and

industry. As an AI chatbot built upon large language models,

ChatGPT has garnered widespread attention and created a

significant milestone in the progress of intelligent technology.

In this study, we opt to use ChatGPT as our experimental

model. Specifically, we utilize the “text-davinci-003”

variant, which falls under the GPT-3.5 category. With an

impressive parameter count of over 175 billion, this model

is one of the largest and most powerful language models

available today, making it highly suitable for various coding-

related tasks. Regarding the parameter settings of using this

model, the “temperature” parameter determines the sam-

pling temperature, ranging from 0 to 2, with higher values

leading to more random outputs. In our experiment, we set it as

0 to ensure stable and controllable output results. Additionally,

we consider the “top_p” parameter, also known as kernel

sampling, which considers the probability mass of labels. For

our experiment, we set it as 1.

Dataset Selection. For this study, we select the APPS

dataset [27], which consists of 10,000 coding problems

sourced from various program competition platforms, includ-

ing Codewars 5, AtCoder 6, Kattis 7, and Codeforces 8, and

offers a diverse range of problems, spanning from simple to

5https://www.codewars.com/
6https://atcoder.jp/
7https://open.kattis.com/
8https://codeforces.com/

highly challenging competition tasks. Each problem within

the APPS dataset is accompanied by a set of ground-truth

solutions and, on average, 21.1 test cases. As illustrated in

Table II, the APPS dataset stands out for its substantial number

of programming competition problems, test cases for validat-

ing the correctness of generated code solutions, and available

ground-truth solutions for reference. Compared with other

code-generation datasets like PY150 [28] and CONCODE [5],

the APPS dataset specifically focuses on competition-level

code-generation tasks, making it an ideal choice for our

investigation.

TABLE II: Details of commonly used datasets.

APPS SPoC PY150 CONCODE

Test Cases Yes Yes None None

of Problems 10,000 677 3,000 104,000

Language Python C++ Python Java

APPS contains two kinds of data, i.e., training and test data.

The test data specifies each problem with the corresponding

test cases, which satisfies the requirement in our experiments

of using test cases to validate the correctness of the generated

code. So we select the 5,000 problems in the test data as the

dataset of this work. Furthermore, the ChatGPT model we

selected has a token limitation of 4,096. When the tokens in

both the prompt input and the answer exceed this threshold,

calling ChatGPT’s API to generate code will be ceased and

fail. A total of 515 questions in APPS test data cannot

be successfully processed by ChatGPT due to this token

limitation. We remove these 515 questions from our dataset.

Eventually, 4,485 questions are selected as the final dataset for

this study, of which details are presented in Table III.

TABLE III: Details of the selected dataset.

Difficulty

Dataset Actual use

Question Test Case Question Test Case

Introductory 1,000 11,747 966 11,040

Interview 3,000 78,382 2,668 70,671

Competition 1,000 15,830 851 13,872

Total 5,000 105,959 4,485 95,583

C. Measurement Selection

For RQ-1, we employ the accuracy rate and pass ratio

metrics. The accuracy rate represents the proportion of so-

lutions generated by ChatGPT that can successfully pass all

test cases. The pass ratio, also known as pass@1 [8], measures

the percentage of test cases passed by the generated solutions.

It is a widely adopted evaluation metric for assessing the

performance of auto-generated programs.

To answer RQ-2, we calculate the textual similarity between

the strict accurate solution code provided by ChatGPT and

the ground truth solutions. To perform this calculation, we

utilize the similarity function from the text2vec package

in Python. As some problems have multiple ground truth

solutions, we analyze the distribution of similarities for each

problem and explore different difficulty levels based on two

other methods: the highest similarity and the average similar-

ity.

1890

Authorized licensed use limited to: Zhejiang University. Downloaded on July 02,2024 at 11:24:12 UTC from IEEE Xplore. Restrictions apply.

For RQ-3, we investigate the cleanness of the accurate codes

generated by ChatGPT. Code quality is evaluated using the

metrics mentioned in Martin’s book [29]. However, not all

indicators from the book can be automatically assessed. In this

study, we select two commonly used measurable indicators
for analysis: function size and file size.

V. STUDY RESULTS

A. RQ-1: Effectiveness of ChatGPT Solutions

To answer the research question RQ-1, we investigate the

effectiveness of the code generated by GPT-3.5 for solving

competition-level problems. A crucial aspect of using GPT-3.5

effectively is the design of appropriate prompts that align with

the tasks; the appropriate prompt can significantly enhance the

generated code’s performance and quality. The selection of an

appropriate prompt depends on various factors, including the

specific task, input data, and desired output format. A well-

crafted prompt should offer clear and concise instructions to

the model, guiding it toward producing the expected output

while minimizing the risk of generating irrelevant or mislead-

ing results. Our experiment consists of two phases to enhance

the accuracy of the generated code.

First Phase. The initial step involves using GPT-3.5 to

generate a code solution for a single iteration, referred to as

‘‘Round-1”, which we preserve for subsequent assessment

and enhancement. The APPS dataset problem encompasses

two input formats: call-based format and standard input for-

mat. As a result, we design distinct prompts for each input

format. For the standard input format, we design the fol-

lowing prompt:

* Act as a python developer. You will be given a problem,
which contains an overview of the problem, a description of
the input and output, and some examples of input and output.
Your job is to write well-formed Python code to solve this
problem, which can pass all inputs and expect outputs given
in the problem example. In addition, the format you respond
to is very strict, and please use the call-based format to write
the code without comments. The detail of the question is the
following: [QUESTION_PLACEHOLDER].

For the call-based format problems, we add an extra sentence

to the end of the prompt of standard input format:

* The function should be defined as [starter code str].
During this phase of prompt design, our objective is twofold:

� to acquaint GPT-3.5 with its intended task of solving

programming problems, and � to facilitate its understanding

of the problem’s structure (e.g., through examples of input/out-

put) and the expected output (e.g., Python code to handle all

inputs and produce desired outputs). This approach aims to

enhance GPT-3.5’s ability to generate effective solutions.

Second Phase. With the first phase, GPT-3.5 can generate

preliminary code solutions for all the competition coding

problems. However, many code solutions either cannot pass

the corresponding test cases or partially pass them. For a given

question with a set of test cases T , the corresponding solution

generated by GPT-3.5 can pass a set of test cases T ′, where

Dataset Problems

Re-design
Prompt

ChatGPT

Call API

GPT-3.5
(text-davinci-003)

Model

Solution Code

Iteration/Optimization
(-5 = Optimize 4 times)

Response

Test

Partial Passed Solutions

Clean

Fig. 2: Workflow of generating solutions automatically.

T ′ ⊂ T , we group such solution as partially-passed one. If

T ′ is empty, the generated code solution is a failed solution.

Thus, in the second phase, we aim to explore the feasibility

of teaching GPT-3.5 to revise partially passed/failed solutions

to accepted (correct) solutions. To this end, we employ a

standardized prompt that provides additional information to

GPT-3.5, enabling it to address the areas of failure in these

solutions:

* I asked you to act as a Python developer to help us solve
the following question before: [QUESTION]. The solution
you gave us before is: [LAST SOLUTION]. However, the
code can not pass all testing inputs and outputs, which are:
[INPUT OUTPUT]. Please modify your solution code to
ensure it can pass all testing inputs and outputs.
In this phase, our attention is directed solely toward the

generated partially-passed solutions. We posit that if a solution

fails to pass any test case, it signifies that the competition

problem is too intricate for GPT-3.5 to solve. Given this

circumstance, repeating the generation process would result

in significantly low efficiency and prohibitively high costs.

Consequently, for each partially-passed solution, we perform

four additional iterations and select the solution that achieves

the highest number of successful test cases among the five

generated solutions (including the first partially-passed solu-

tion), designating it as the final solution (Round-5). The

overall workflow of our approach is illustrated in Figure 2.

Data Cleaning. In the experiment, we observe that even

though we request the GPT-3.5 API to generate pure Python

code without any redundant parts, the generated code solu-

tions still contain a mixture of natural language notes (e.g.,

markdowns and others). Here, we outline the common answer

formats we encountered and subsequently remove them to

prevent testing errors:

* In the form of Markdown
* Begin with “Solution:”
* Begin with “—–Python Code—–”
* Begin with “——Solution—–”

The performance of GPT-3.5 is presented in Table IV,

wherein we compare its preliminary results (Round-1 results)

with GPT-Neo and a more recent model (CodeRL) [30] on

APPS from two aspects: the average and strict accuracy of test

cases across various difficulty levels. It should be noted that

GPT-Neo and CodeRL did not redesign the prompt during the

1891

Authorized licensed use limited to: Zhejiang University. Downloaded on July 02,2024 at 11:24:12 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: The comparison of GPT-3.5, GPT-Neo and CodeRL on the average percentage of test cases passed and strict

accuracy for different difficulty levels.

Test Case Average Strict Accuracy

Model Introductory Interview Competitive Average Introductory Interview Competitive Average

GPT-Neo 14.7% 9.9% 6.5% 10.2% 3.9% 0.6% 0.0% 1.1%

CodeRL - - - - 7.1% 1.9% 0.8% 2.7%

GPT-3.5 37.6% 25.3% 16.1% 25.4% 30.1% 9.7% 4.3% 13.1%

verification test. Notably, GPT-3.5 significantly outperforms

GPT-Neo, achieving a test case average and strict accu-

racy of 37.6% and 30.1%, respectively, for the introductory

level, in contrast to GPT-Neo’s 14.7% and 3.9%. Regarding

competition-level problems, GPT-Neo fails to generate any

correct code solutions, while CodeRL-generated code solu-

tions can only pass 0.8% of the problems. In contrast, GPT-3.5

successfully solves 4.3% of the most challenging programming

problems (competition-level) , and its generated code solutions

can pass 16.1% of the test cases. For the other difficulty levels,

GPT-3.5 also achieves the highest pass rate. It is essential to

note that GPT-Neo is meticulously trained and fine-tuned on

the APPS dataset, whereas GPT-3.5 successfully tackles these

competition problems through its zero-shot learning ability

without any specific training process. This underscores the

potential of GPT-3.5 for competition-level code generation

tasks. Moreover, it demonstrates the superior performance of

GPT-3.5 in understanding and solving simple and complex

problems.

TABLE V: Comparison of Top-5 and Round-5 results on

APPS by evaluating the performance of GPT-Neo and GPT-

3.5 on introductory problems.

Top/Round-5 Results GPT-Neo GPT-3.5

Test Case Average 19.9% 25.7%

Strict Accuracy 5.5% 14.7%

Furthermore, we compare the results of GPT-3.5 Round-5
with GPT-Neo Top-5 on introductory level problems, illus-

trated in Table V. We omitted CodeRL for comparison here

because they did not give the detailed pass ratio of test

cases in their research. The Top-5 best performance of GPT-

Neo in terms of “Test Case Average” and “Strict Accuracy”

are 19.9% and 5.5%, respectively, compared to 25.7% and

14.7% for GPT-3.5, both of which significantly surpass the

state-of-the-art [27] experimental results. It is worth men-

tioning that for GPT-3.5 Round-5, we consider partially

passed problems, representing the lower bound of GPT-3.5’s

results. Furthermore, we find that the percentage improved of

strict accuracy(14.7%-5.5%=9.2%) is higher than the test case

average(25.7%-19.9%=5.8%), and those problems with more

test cases are hard to be repaired after five rounds to become

the strict accuracy solution. Therefore, problems with fewer

test cases are easier to fix under partial pass.
We have observed variations in the test pass rates and accu-

racy across problems of different difficulty levels. Specifically,

the introductory-level problems exhibit a higher test pass rate,

which is reasonable as these problems are generally easier to

understand and solve than the other difficulty levels. To assess

TABLE VI: Average passing rate for solutions that pass partial

test cases.

Introductory Interview Competition

Round-1 39.9% 32.5% 34.7%

Round-5 38.3% 32.1% 35.0%

the robustness of GPT-3.5 in solving competition problems of

different levels, we further calculated the average test pass

rate for partially-passed solutions across different difficulty

levels, as presented in Table VI. The table shows that the

overall average test pass rate is approximately 35%, indicating

that GPT-3.5 provides relatively consistent responses when it

comprehends the problem, irrespective of the difficulty level.

However, the average test pass rates for the introductory

and interview levels slightly decreased from Round-1 to

Round-5, suggesting that in the subsequent iterations, GPT-

3.5 either fully understands the problem and provides accurate

responses, or it still generates imprecise answers that do not

significantly increase the number of test cases passed.

--- a/chatgpt_solution.txt
+++ b/opt_gptsolution_2.py
@@ -1,10 +1,12 @@
+# Modified Solution
n = int(input())
a = list(map(int, input().split()))
mod = 10**9 + 7
ans = 0

-m = 1
-for i in range(2, n+1):
- if a[m-1] < a[i-1]:
- ans += a[m-1]
- m = i
+for perm in itertools.permutations(a): # Iterate

through all permutations of the array a
+ m = 1 # Set m to 1 for each permutation
+ for i in range(2, n+1): # Iterate through each

element of the permutation
+ if perm[m-1] < perm[i-1]: # Check if the

current element is greater than the previous one
+ ans += perm[m-1] # If so, add the

previous element to the answer and set m to i
+ m = i
print(ans % mod)

Fig. 3: The patch diff for problem “1506” in the test folder

of APPS.

To gain a deep insight into the generated code by GPT-3.5,

we selected two examples that initially passed only partial

tests in the first round but successfully passed all tests in

the subsequent optimization process for analysis. The first

example is the question “1506” with a difficulty level of

interview, accessible through the link here. According to the

problem statement, “two elements are considered different if

their indices differ, so for every array, there are exactly n!

1892

Authorized licensed use limited to: Zhejiang University. Downloaded on July 02,2024 at 11:24:12 UTC from IEEE Xplore. Restrictions apply.

permutations.” This problem requires calculating all permu-

tations of a sequence. To compare the code generated in

the first round with the optimized code, we present their

diff information in Figure 3. The preliminary solution only

calculates the sequence once, leading to only 4 of the 16

test cases passing. However, after feeding the failed tests back

to GPT-3.5, the optimized solution successfully calculates the

entire permutation of the input sequence, resulting in all 16 test

cases passing. In other words, GPT-3.5 did not fully capture

the entire permutation requirement in the first round. However,

it comprehended the requirement during the second round after

we “taught” GPT-3.5, where test cases failed.

--- a/chatgpt_solution.txt
+++ b/opt_gptsolution_2.py
@@ -3,7 +3,16 @@ sticks = list(map(int, input().

split()))
if N < 3:

print("impossible")
elif N == 3:

- if (sticks[0] + sticks[1] > sticks[2]) and (
sticks[1] + sticks[2] > sticks[0]) and (sticks
[2] + sticks[0] > sticks[1]):

+ if (sticks[0] + sticks[1] > sticks[2]) and (
sticks[1] + sticks[2] > sticks[0]) and (sticks
[2] + sticks[0] > sticks[1]) and (sticks[0] !=
0) and (sticks[1] != 0) and (sticks[2] != 0):

print("possible")
else:

- print("impossible")
\ No newline at end of file
+ print("impossible")
+else: # N > 3
+ for i in range(N-2): # Iterate through all

possible combinations of three sticks.
+ for j in range(i+1, N-1):
+ for k in range(j+1, N):
+ if (sticks[i] + sticks[j] > sticks[

k]) and (sticks[j] + sticks[k] > sticks[i]) and
(sticks[k] + sticks[i] > sticks[j]) and (sticks
[i] != 0) and (sticks [j] != 0) and (sticks [k]
!= 0): # Check if the three selected lengths
can form a triangle.

+ print("possible") # If so,
output "possible".

+ exit() # Exit the program.
+
+ print("impossible") # If no combination of

three lengths can form a triangle, output "
impossible".

Fig. 4: The patch diff for problem “4895” in the test folder

of APPS.

Another example is the problem “4895” with a difficulty

level of introductory, which can be accessed through the link

here. This problem involves solving the “Sticky Situation”

programming problem, which entails determining whether a

triangle can be formed using several sticks of different lengths.

In other words, the task is to arrange and combine each

group of sticks and judge whether they meet the conditions

for establishing a triangle. Similarly, we present the diff

information before and after GPT-3.5 revises the code in

Figure 4. The initial code only handles cases where the number

of sticks is less than 3 or equal to 3, but it does not consider

cases where the number of sticks is greater than 3. After GPT-

3.5 optimizes the code, it adds processing for cases where

the number of sticks is greater than 3 and introduces three

layers of for loops to obtain all possible permutations and

combinations, enabling the judgment of triangle establishment

conditions. Additionally, the optimized code includes an early

exit from the loop if a triangle can be formed, thereby avoiding

redundant calculations. As a result, the optimized code exhibits

more comprehensive processing and successfully passes all

test cases.

� Answers to RQ-1

We conduct the first comprehensive empirical study to
evaluate the potential of GPT-3.5 in solving programming
problems of different difficulty levels. Our experimental
results demonstrate that GPT-3.5 significantly outperforms
the best model on this task, showcasing its remarkable zero-
shot learning ability.

B. RQ-2: Similarities between ChatGPT solutions and
ground-truth solutions

Building upon our observations from the first research ques-

tion, we aim to investigate whether ChatGPT demonstrates

varying behaviors (copying from somewhere else or writing

by itself) when solving problems of different difficulty levels.

To achieve this, we analyze the similarity between the code

solutions generated by ChatGPT and the ground truth provided

in the dataset, mainly focusing on the solutions that passed all

test cases in the Round-5 results.

For the problems in the APPS dataset, each problem may

have multiple ground truth solutions. To analyze the similarity

between the ground truth solutions and their corresponding

ChatGPT-generated solutions, we pair them together and cal-

culate the similarity score. The distribution of these similarity

scores is illustrated in Figure 5. The mean and median values

of these similarities are 78.2% and 81.0%, respectively, with

the majority of results falling within the range of [69.7%,

89.2%]. This indicates that the solution codes generated by

ChatGPT exhibit a high degree of overlap with the codes in

the ground truth solutions.

Fig. 5: The distribution of similarities between accurate Chat-

GPT solutions and their corresponding ground truths.

We then investigate the similarities for different difficulty

levels and employ two methods to obtain the final similarity

scores. The first approach calculates the average of all simi-

larities for each problem, while the second approach selects

the maximum similarity score. During this investigation, we

obtained 659 ChatGPT solutions that ultimately passed the test

cases from the experimental results in Section V-A. However,

we encountered difficulties for 146 of these solutions as the

corresponding ground truth was not available, leading to a total

1893

Authorized licensed use limited to: Zhejiang University. Downloaded on July 02,2024 at 11:24:12 UTC from IEEE Xplore. Restrictions apply.

TABLE VII: The distribution of similarities.

Similarity(%) Average Maximum

[0-20] 0 0

(20-40] 0 0

(40-60] 39 11

(60-80] 280 56

(80-100] 194 446

of 513 actual computed final similarity scores. Subsequently,

we classified these scores into different intervals to study their

distribution, as presented in Table VII.

Table VII reveals that the average and maximum similarity

scores are not lower than 40%, with most scores concentrated

above 60%. Only a few similarities fall between 40% and 60%.

However, when considering the maximum similarity score,

an impressive 87% of the similarities are concentrated above

80%.

TABLE VIII: Average similarities for each difficulty level.

Difficulty Introductory Interview Competition

Average 79.5% 72.1% 65.3%

We calculated the average similarity scores for each dif-

ficulty level of the problems to assess the performance of

ChatGPT, and the results are presented in Table VIII. It is

evident that as the problems become more challenging, the

average similarity decreases, while for simpler problems, the

average similarity increases. This finding indicates that as

the complexity of the problem increases, ChatGPT tends to

compose the code by itself rather than copying directly from

the code bases. Furthermore, we examined the maximum

similarity for each question and found that 9 interviews and

22 introductory problems achieved a 100% similarity, thereby

confirming our earlier observations.

=====ChatGPT Solution======

n = int(input())

a = list(map(int, input().split()))

lcm_min = float('inf')

i_min, j_min = 0, 0

for i in range(n):

for j in range(i+1, n):

lcm_ij = (a[i]*a[j])

if lcm_ij < lcm_min:

lcm_min = lcm_ij

i_min, j_min = i+1, j+1

print(i_min, j_min)

======== Solution 1 =========

import math from collections

import defaultdict

import sys

input = sys.stdin.readline

def main():

n = int(input())

a = list(map(int, input().split()))

MAX = 10**7 + 1

res = MAX * MAX

…

res = MAX * MAX

for index in range(n):

val = a[index]

…

def __starting_point():

main()

__starting_point()

Fig. 6: Comparison between the ChatGPT solution and ground

truth of problem “4066”.

We conducted a case study to gain deeper insights into the

reasons behind these high similarities, selecting two examples

with the highest and lowest similarities below 100%. Firstly,

we focused on problem No. “4066” that has only one ground

truth solution, resulting in a similarity of 53.9% between it and

the ChatGPT solution. This similarity arises due to the similar

definitions in front of the code; however, their methods are

different. Figure 6 displays the codes of these two solutions.

In the ChatGPT solution on the left, the variable names such

as i min and j min hold meaningful values used to record

the minimum index. Moreover, this solution relies on fewer

third-party libraries, resulting in cleaner and more generalized

code. Notably, it uses “inf” to initialize the minimum value,
proving more efficient than the “MAX” calculation. As

a result, the ChatGPT-generated code contains significantly

fewer tokens, indicating reduced potential bugs and enhanced

readability. Furthermore, this ChatGPT solution successfully

passes all 32 test cases for the problem, affirming its higher

quality in terms of correctness and functionality.

We proceeded to investigate another case randomly chosen.

The problem is “1701” and has 24 ground truth solutions. The

highest similarity of 92.7% was calculated with solution 14.

Figure 7 presents both the ChatGPT-generated solution and

solution 14 details. Compared to the traditional implementa-

tion, a clear advantage of the ChatGPT code is its enhanced

readability and more detailed comments. Moreover, naming

local variables in the ChatGPT solution is more meaningful,

making it easier to understand their purpose. For instance,

the variable “servers” in the ChatGPT code indicates that it

stores content related to all IP addresses and corresponding

servers. In contrast, the variable “d” in the ground truth code

is less intuitive. Additionally, using “command” on the left is

more readable than “s” on the right. Furthermore, the ChatGPT

code is refined, employing unpacking syntax for “command”

and “ip” assignments, allowing the loop to read the input

and automatically assign values to corresponding variables

simultaneously. This approach is more efficient than the four

lines of code on the right.

=====ChatGPT Solution ======

n, m = map(int, input().split())

servers = {}

for _ in range(n):

name, ip = input().split()

servers[ip] = name

for _ in range(m):

command, ip =

input().split(';')[0].split()

print(f'{command} {ip};

#{servers[ip]}')

======== Solution 14 ========

n,m=map(int,input().split())

d={}

for _ in range(n):

name,ip=input().split()

d[ip]=name

for _ in range(m):

s=input()

ip=s.split()[-1]

if ip[-1]==';':

ip=ip[:-1]

print(s,"#"+d[ip])

Fig. 7: Comparison between the ChatGPT solution and ground

truth of problem “1701”.

� Answers to RQ-2

We observed that on simpler problems, ChatGPT tends
to reuse more existing code, while on more complicated
problems, it prefers to create new solutions from scratch.
Additionally, the code produced by ChatGPT adheres more
closely to programming rules and is easier to read.

1894

Authorized licensed use limited to: Zhejiang University. Downloaded on July 02,2024 at 11:24:12 UTC from IEEE Xplore. Restrictions apply.

C. RQ-3: Cleanness of ChatGPT solutions

In this study, we investigate the strict accurate solutions

generated by ChatGPT from four aspects: function size, file

size, and length of code lines, to provide measurable indicators

for assessing the quality of ChatGPT-generated code.

Function sizes are assessed based on the cyclomatic com-

plexity9 and lines of code (LOCs) in each function. Addition-

ally, file sizes are evaluated based on the lines of code in each

source file. Furthermore, the number of code tokens in each

line determines the code line length. Uncle Bob emphasized

the importance of small functions with meaningful names

for better clean code practice [29]. According to Google’s

recommendations presented in Table IX, developers should

limit each C, C++, JavaScript, and Python code line to 80

characters and each Java code line to 100 characters [32]. Mc-

Cabe’s presentation on “Software Quality Metrics to Identify

Risk” [33] interprets cyclomatic complexity in four categories.

Functions with a cyclomatic complexity ranging from 1 to 10

have simple procedures with little risk. On the other hand,

functions with higher cyclomatic complexity will result in

more complicated code with higher risk.

TABLE IX: Recommended LOCs and cyclomatic complexity

of functions.

Google C C++ Java JavaScript Python

LOCs of functions 40 - - - 40

Cyclomatic Complexity

1 - 10 Simple procedure, little risk

11 - 20 More complex, moderate risk

21 - 50 Complex, high risk

> 50 Untestable code, very high risk

1) Function Sizes: Figure 8 illustrates the distribution of

function sizes regarding cyclomatic complexity. Since many

solutions generated by ChatGPT do not have explicitly defined

functions, only 34 functions are included in the statistics. In

comparison, 68,448 functions from the ground truth dataset

are participating in the statistics. Most Python code functions

generated by ChatGPT satisfy the criterion of small functions

in clean code, with their cyclomatic complexities limited to

within 5.

Fig. 8: Distribution of cyclomatic complexities.

9Cyclomatic complexity is a measurable indicator representing the number
of linearly independent paths in a section of the source code. It was developed
by Thomas J. McCabe Sr [31] to describe the complexity of a program.

Figure 9 displays the distribution of Lines of Code (LOCs)

for functions. Most of these functions contain 19 lines or

fewer, significantly below Google’s standard of 40 lines. The

central box portions of the distribution are [7, 14] and [3, 16],

respectively, indicating that the lower quartile of ChatGPT-

generated code surpasses that of the ground truth. In contrast,

the upper quartile falls below it. This demonstrates that the

distribution of ChatGPT-generated code is more concentrated,

with its overall distribution being lower than that of the ground

truth.

Fig. 9: Distribution of function lines.

2) File Sizes: Figure 10 illustrates the distribution of file

sizes in terms of Lines of Code (LOCs) for the source code

files. We considered 659 accurate ChatGPT-generated solution

files and 88,014 ground-truth solutions from the APPS dataset

for analysis. Both solutions predominantly contain code within

26 lines (the third quartile), suggesting their suitability for

solving competition-level problems rather than more extensive

project requirements.

Fig. 10: Distribution of file lines.

Comparing the box sizes, we observe that ground truth so-

lutions encompass a much wider range of file sizes than Chat-

GPT solutions. Overall, file size distribution aligns with the

pattern seen in function sizes. ChatGPT-generated solutions

are distributed between 5 and 11 lines, whereas ground truth

solutions span [9, 26] lines. Consequently, the distribution of

ChatGPT-generated solutions is smaller than the ground truth.

ChatGPT’s solution code employs smaller file sizes to

address various problems, including introductory, interview,

and competition problems within the APPS dataset.

1895

Authorized licensed use limited to: Zhejiang University. Downloaded on July 02,2024 at 11:24:12 UTC from IEEE Xplore. Restrictions apply.

� Answers to RQ-3

The distributions of function size and file size of the
accurate solutions generated by ChatGPT, measured by
the code quality based on the standard of clean code, are
comparable to the ground truth solutions. This indicates
that ChatGPT can generate code as clean as professional
developers produce.

VI. IMPLICATION

Implications for researchers: Our paper verifies the feasibil-

ity of using LLMs to solve competition-level programming

problems by iteratively calling the ChatGPT API to repair

partially passed code. However, the success rate is still subop-

timal, and the performance can be further boosted by involving

developers’ feedback and/or code contextual information (e.g.,

the abstract syntax tree, the control flow graph, or the data flow

graph). Furthermore, generating higher-quality code through

ChatGPT, aligned with clean code principles, poses potential

and widespread research directions for software engineering

researchers.

Implications for practitioners: One of the essential take-

aways from our study is the great potential of using ChatGPT

for solving coding problems. For the developers who need

to write algorithms to solve their daily problems, our study

suggests that by describing the details of the problem, the

ChatGPT can provide possible solutions to their problems,

which can significantly improve problem-solving efficiency

and save developers’ effort on more creative works. Practition-

ers could consider adopting LLMs in their daily development

for solving coding problems.

VII. THREATS TO VALIDITY

Threats to external validity: One threat to external validity in

our code generation analysis is the model selection, as GPT-

4 is expensive, and our application to access GPT-4 API is

still pending. To mitigate this threat, we opt for the earlier

version of the model, ChatGPT-3.5. While its performance

may be less advanced than GPT-4, we ensure consistency

by comparing the results obtained using the same model in

our study. Another potential threat to external validity lies in

the training data of ChatGPT, which might already include

the problems under investigation. To address this concern, we

conduct a preliminary study using HumanEval to explore this

potential bias. Moreover, due to the high token cost of re-

throwing the question to ChatGPT each time, we choose only

to regenerate codes for incomplete pass solutions. Instead, we

focus on optimizing codes that can partially pass the test cases

to proceed with our experimental step.

Threats to internal validity: Our study’s internal validity

threats arise from adjusting model parameters to generate

solutions. Randomly generated results can be challenging to

optimize effectively. To address this concern, we mitigate the

threat by fixing the parameters, ensuring consistent effects for

each problem. Another validity concern relates to analyzing

similarities between ChatGPT and ground truth. Since text

similarity alone may not fully reflect code consistency, we

perform case analysis to reduce subjective judgment errors.

In the future, we aim to address this issue by incorporat-

ing code cloning technology. Additionally, our evaluation of

code cleanliness focuses on measurable indicators. However,

clean code encompasses various aspects, such as design rules,

code understandability tips, function implementation rules,

and writing comment guidelines, which warrant qualitative

analysis. These metrics will be considered in our future work.

VIII. RELATED WORK

Code Generation Evaluation. Researchers employ a vari-

ety of indicators to quickly evaluate the quality of generated

code using a unified standard. One of the most commonly

used metrics is exact match accuracy, which represents the

percentage of exact matches between the model-generated

code and the reference code. While BLEU [34] is a widely

used index for evaluating text/code generation quality [35]–

[38], its application in code generation technology is limited.

Ren et al. [39] argue that the BLEU index, designed for natural

language evaluation, overlooks the grammatical and semantic

aspects of code, making it unsuitable for code evaluation.

To address this limitation, a new evaluation index called

CodeBLEU is introduced. CodeBLEU incorporates n-gram

matching advantages from BLEU and integrates code syntax

through the abstract syntax tree (AST) and code semantics

through the data stream.

LLMs’ code generation capability. In 2017, Chen et al.

[40] introduced Codex, a GPT language model fine-tuned on

publicly available code from GitHub, explicitly focusing on

Python code-writing capabilities. The performance of Codex

on typical introductory programming problems was analyzed

by J Finnie-Ansley et al. [41], who compared its results with

those of students who took the same exams under normal

conditions. Notably, Codex outperformed most students. Ad-

ditionally, in 2023, Liu et al. [42] proposed EvalPlus, an

evaluation framework that precisely assesses the functional

correctness of LLM-generated code. In the same year, Argha-

van Moradi Dakhel et al. [43] research the capabilities of

Copilot by generating solutions for fundamental algorithmic

problems, and they compare Copilot’s proposed solutions with

those of human programmers on a set of programming tasks.

They find that Copilot can provide solutions to most problems.

However, some solutions are buggy and non-reproducible.

However, these studies needed more practical verification with

diverse, complex real-world problems. In contrast, our work

systematically evaluates ChatGPT’s capabilities using a wide

range of practical and challenging tasks, providing a more

comprehensive and practical assessment.

IX. CONCLUSION

The ability of large models for automatic code generation

has been extensively explored in the research community,

with various approaches to analyze the correctness of gen-

erated solutions. In this work, we introduce a novel method

involving re-designed prompts to enhance the accuracy of

codes generated by ChatGPT. Notably, this aspect needs to

1896

Authorized licensed use limited to: Zhejiang University. Downloaded on July 02,2024 at 11:24:12 UTC from IEEE Xplore. Restrictions apply.

be thoroughly explored in the existing literature. To validate

the effectiveness of our approach, we conduct a preliminary

study using a relatively simple dataset (Human-Eval). The

positive results from this analysis demonstrate the feasibility

of our method. Subsequently, we extend our investigations to

a more complex dataset (APPS) to comprehensively assess

the generation ability of large models like ChatGPT across

problems of varying difficulty levels. Furthermore, we delve

into the generating habits of ChatGPT and evaluate the quality

of the generated code. Our experimental findings highlight that

a well-designed prompt significantly enhances the accuracy

of code generation. Specifically, for simple problems, the

solutions generated by ChatGPT exhibit more remarkable

similarity to the ground truth. Moreover, the strict and accurate

solutions provided by ChatGPT also demonstrate comparable

code quality from the perspective of clean coding practices,

similar to code written by professional developers. These

observations underscore the potential of large models like

ChatGPT in aiding code generation tasks, mainly when guided

by optimized prompts.

ACKNOWLEDGMENT

This research is partially supported by the Shanghai Rising-

Star Program (23YF1446900) and the National Science Foun-

dation of China (No. 62202341). This research is partially

supported by the Starry Night Science Fund of Zhejiang

University Shanghai Institute for Advanced Study, Grant No.

SN-ZJU-SIAS-001.

REFERENCES

[1] Z. Gao, X. Xia, D. Lo, and J. Grundy, “Technical q&a site answer
recommendation via question boosting,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 30, no. 1, pp. 1–34, 2020.

[2] Z. Yang, S. Chen, C. Gao, Z. Li, G. Li, and R. Lv, “Deep learning
based code generation methods: A literature review,” CoRR, vol.
abs/2303.01056, 2023. [Online]. Available: https://doi.org/10.48550/
arXiv.2303.01056

[3] W. Ling, E. Grefenstette, K. M. Hermann, T. Kočiskỳ, A. Senior,
F. Wang, and P. Blunsom, “Latent predictor networks for code gen-
eration,” arXiv preprint arXiv:1603.06744, 2016.

[4] P. Yin and G. Neubig, “A syntactic neural model for general-purpose
code generation,” arXiv preprint arXiv:1704.01696, 2017.

[5] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Mapping language
to code in programmatic context,” arXiv preprint arXiv:1808.09588,
2018.

[6] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[7] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code repre-
sentations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[8] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[9] H. Tian, W. Lu, T. O. Li, X. Tang, S. Cheung, J. Klein, and
T. F. Bissyandé, “Is chatgpt the ultimate programming assistant -
how far is it?” CoRR, vol. abs/2304.11938, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2304.11938

[10] “Source code of experiments,” https://zenodo.org/record/7899853#
.ZFTpkXZBxD8, Last Access: May 2023.

[11] Z. Yang, S. Chen, C. Gao, Z. Li, G. Li, and R. Lv, “Deep learning
based code generation methods: A literature review,” arXiv preprint
arXiv:2303.01056, 2023.

[12] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing
systems, vol. 27, 2014.

[13] Z. Sun, Q. Zhu, L. Mou, Y. Xiong, G. Li, and L. Zhang, “A
grammar-based structural CNN decoder for code generation,” in
The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019. AAAI Press, 2019, pp. 7055–7062.
[Online]. Available: https://doi.org/10.1609/aaai.v33i01.33017055

[14] B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin, “Code generation as a dual
task of code summarization,” Advances in neural information processing
systems, vol. 32, 2019.

[15] L. Phan, H. Tran, D. Le, H. Nguyen, J. Anibal, A. Peltekian, and Y. Ye,
“Cotext: Multi-task learning with code-text transformer,” arXiv preprint
arXiv:2105.08645, 2021.

[16] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “Codegen: An open large language model for code with
multi-turn program synthesis,” arXiv preprint arXiv:2203.13474, 2022.

[17] S. A. Hayati, R. Olivier, P. Avvaru, P. Yin, A. Tomasic, and
G. Neubig, “Retrieval-based neural code generation,” arXiv preprint
arXiv:1808.10025, 2018.

[18] F. F. Xu, Z. Jiang, P. Yin, B. Vasilescu, and G. Neubig, “Incorporating
external knowledge through pre-training for natural language to code
generation,” arXiv preprint arXiv:2004.09015, 2020.

[19] P. Yin and G. Neubig, “Tranx: A transition-based neural abstract
syntax parser for semantic parsing and code generation,” arXiv preprint
arXiv:1810.02720, 2018.

[20] Z. Gao, X. Xia, D. Lo, J. Grundy, and Y.-F. Li, “Code2que: A tool for
improving question titles from mined code snippets in stack overflow,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2021, pp. 1525–1529.

[21] N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Ra-
jamani, and R. Sharma, “Jigsaw: Large language models meet program
synthesis,” in Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 1219–1231.

[22] X. Wang, Y. Wang, Y. Wan, F. Mi, Y. Li, P. Zhou, J. Liu, H. Wu,
X. Jiang, and Q. Liu, “Compilable neural code generation with compiler
feedback,” arXiv preprint arXiv:2203.05132, 2022.

[23] B. Chen, F. Zhang, A. Nguyen, D. Zan, Z. Lin, J.-G. Lou, and
W. Chen, “Codet: Code generation with generated tests,” arXiv preprint
arXiv:2207.10397, 2022.

[24] OpenAI, “Gpt-4 technical report,” 2023.
[25] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training

of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and
T. Solorio, Eds. Association for Computational Linguistics, 2019, pp.
4171–4186. [Online]. Available: https://doi.org/10.18653/v1/n19-1423

[26] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min,
B. Zhang, J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen,
J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J. Nie, and J. Wen, “A
survey of large language models,” CoRR, vol. abs/2303.18223, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2303.18223

[27] D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo,
C. Burns, S. Puranik, H. He, D. Song et al., “Measuring coding challenge
competence with apps,” arXiv preprint arXiv:2105.09938, 2021.

[28] “150k python dataset,” https://eth-sri.github.io/py150, 2016.
[29] R. C. Martin, Clean code: a handbook of agile software craftsmanship.

Pearson Education, 2009.
[30] H. Le, Y. Wang, A. D. Gotmare, S. Savarese, and S. C.

Hoi, “Coderl: Mastering code generation through pretrained
models and deep reinforcement learning,” in NeurIPS, 2022.
[Online]. Available: http://papers.nips.cc/paper files/paper/2022/hash/
8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html

[31] T. J. McCabe Sr, “Cyclomatic complexity,” National Bureau of Stan-
dards. special Publication. m99, 1976.

[32] Google, “Google style guides,” https://github.com/google/styleguide,
Last Access: August 2022.

[33] T. McCabe, “Software quality metrics to identify risk,” http://www.
mccabe.com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt, Last Ac-
cess: August 2022.

1897

Authorized licensed use limited to: Zhejiang University. Downloaded on July 02,2024 at 11:24:12 UTC from IEEE Xplore. Restrictions apply.

[34] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics,
July 6-12, 2002, Philadelphia, PA, USA. ACL, 2002, pp. 311–318.
[Online]. Available: https://aclanthology.org/P02-1040/

[35] X. Hu, Z. Gao, X. Xia, D. Lo, and X. Yang, “Automating user notice
generation for smart contract functions,” in 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2021, pp. 5–17.

[36] X. Hu, X. Xia, D. Lo, Z. Wan, Q. Chen, and T. Zimmermann,
“Practitioners’ expectations on automated code comment generation,”
in Proceedings of the 44th International Conference on Software Engi-
neering, 2022, pp. 1693–1705.

[37] Z. Gao, X. Xia, J. Grundy, D. Lo, and Y.-F. Li, “Generating question
titles for stack overflow from mined code snippets,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 29, no. 4, pp.
1–37, 2020.

[38] Z. Gao, X. Xia, D. Lo, J. Grundy, X. Zhang, and Z. Xing, “I
know what you are searching for: Code snippet recommendation from
stack overflow posts,” ACM Transactions on Software Engineering and
Methodology, vol. 32, no. 3, pp. 1–42, 2023.

[39] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, and S. Ma, “Codebleu: a method for automatic
evaluation of code synthesis,” CoRR, vol. abs/2009.10297, 2020.
[Online]. Available: https://arxiv.org/abs/2009.10297

[40] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray,

R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,
B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser,
M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings,
M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain,
W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra,
E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati,
K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish,
I. Sutskever, and W. Zaremba, “Evaluating large language models
trained on code,” CoRR, vol. abs/2107.03374, 2021. [Online]. Available:
https://arxiv.org/abs/2107.03374

[41] J. Finnie-Ansley, P. Denny, B. A. Becker, A. Luxton-Reilly, and
J. Prather, “The robots are coming: Exploring the implications of
openai codex on introductory programming,” in ACE ’22: Australasian
Computing Education Conference, Virtual Event, Australia, February
14 - 18, 2022, J. Sheard and P. Denny, Eds. ACM, 2022, pp. 10–19.
[Online]. Available: https://doi.org/10.1145/3511861.3511863

[42] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated
by chatgpt really correct? rigorous evaluation of large language models
for code generation,” CoRR, vol. abs/2305.01210, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2305.01210

[43] A. Moradi Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh,
M. C. Desmarais, and Z. M. J. Jiang, “Github copilot ai
pair programmer: Asset or liability?” Journal of Systems and
Software, vol. 203, p. 111734, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0164121223001292

1898

Authorized licensed use limited to: Zhejiang University. Downloaded on July 02,2024 at 11:24:12 UTC from IEEE Xplore. Restrictions apply.

