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Abstract—Smart contracts have obtained much attention and
are crucial for automatic financial and business transactions. For
end-users who have never seen the source code, they can read
the user notice shown in end-user client to understand what
a transaction does of a smart contract function. However, due
to time constraints or lack of motivation, user notice is often
missing during the development of smart contracts. For end-
users who lack the information of the user notices, there is no
easy way for them to check the code semantics of the smart
contracts. Thus, in this paper, we propose a new approach
SMARTDOC to generate user notice for smart contract functions
automatically. Our tool can help end-users better understand
the smart contract and aware of the financial risks, improving
the users’ confidence on the reliability of the smart contracts.
SMARTDOC exploits the Transformer to learn the representation
of source code and generates natural language descriptions
from the learned representation. We also integrate the Pointer
mechanism to copy words from the input source code instead
of generating words during the prediction process. We extract
7,878 〈function, notice〉 pairs from 54,739 smart contracts
written in Solidity. Due to the limited amount of collected
smart contract functions (i.e., 7,878 functions), we exploit a
transfer learning technique to utilize the learned knowledge to
improve the performance of SMARTDOC. The learned knowledge
obtained by the pre-training on a corpus of Java code, that
has similar characteristics as Solidity code. The experimental
results show that our approach can effectively generate user
notice given the source code and significantly outperform the
state-of-the-art approaches. To investigate human perspectives on
our generated user notice, we also conduct a human evaluation
and ask participants to score user notice generated by different
approaches. Results show that SMARTDOC outperforms baselines
from three aspects, naturalness, informativeness, and similarity.

Index Terms—Smart Contract, User Notice Generation, Deep
Learning

I. INTRODUCTION

Recent years have seen an emerging interest in cryptocur-

rencies (e.g., Bitcoin and Ethereum) on distributed ledgers

(a.k.a., Blockchains [1]) from both industry and academia.

As one of the largest cryptocurrency platform [2], Ethereum

has become a widely used platform to enable financial and

business transactions. As the core of Ethereum [3], smart

contracts [4][5] are Turing-complete programs and executed

‖Also with PengCheng Laboratory.¶Corresponding author.

on the Ethereum Blockchain. After the deployment, the end-

users can interact with a smart contract by sending transactions

to its functions. Each transaction consumes a certain amount of

“gas” whose price is given in Ethereum cryptocurrency named

Ether ($737.15 per unit of Ether as of Dec 2020 [6]). Due

to the high stakes of smart contracts and the potential risk

of financial loss for users, it is necessary to assist end-users

better understand the functionality of smart contracts.

Two groups of people interact with smart contracts: de-

velopers and end-users. When developers implement a smart

contract, they need to translate financial operations (e.g.,

transfer) into one or more contract transactions; then the end-

users start the transaction which triggers the execution of a

function defined within the smart contract. In this study, we

argue that the end-users are often non-tech-savvy consumers

of the contracts. To assist these users who cannot read the

source code, Solidity (one of the most popular programming

language for smart contracts) provides a mechanism that can

provide notices for end-users. An example of a smart contract

function and how it is used by an end-user are illustrated

in Figure 1 and Figure 2. Consider Alice is an end-user of

smart contracts who knows nothing about programming; when

she submits a transaction to the above function with a target

address of 0x83***Cc and “mintedAmount” of 100, then

the user notice will be rendered to Alice as: “Create 100
tokens and send it to 0x83***Cc”. After reading

the user notice, Alice can better understand the contract and

thus can better make informed decision, i.e., Reject or Confirm

the transaction.

Unfortunately, user notices are often lacking for a large

number of smart contracts. Even though the official guide

line of Solidity recommends that the smart contracts should

be annotated with user notice for all public interfaces, this

practice is often neglected or ignored by developers during

smart contract development. This will make the end-users

completely clueless and uninformed, which may discourage

the participation of end-users and the usability of the smart

contract. Moreover, due to the unalterable feature of the

blockchain system, unlike traditional software, user notice can

not be added once the smart contract is deployed. Therefore, it

is desirable to have a tool that can automatically generate user

notices for smart contract developers whenever they forget to
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Fig. 1. An example of a smart contract function

do so.

Existing approaches mainly focus on generating comments

for common programming languages, e.g., Java and Python.

These comments are provided to developers and help them to

understand the source code. However, generating comments

especially user-oriented comments (i.e., user notices) has not

gained much attention yet. Making such a tool for smart con-

tracts is a non-trivial task considering the following challenges:

(i) Dynamic Expressions Mechanism. The user notice in

smart contracts supports dynamic expressions. Different from

the general code comments of other programming languages

(e.g., Java comments), the Solidity compiler produces the

user notice dynamically from the source code. The dynamic

expression mechanism requires that certain words in the user

notice should be identical with the corresponding tokens in

source code. For the example shown in Figure 1, the word

“mintedAmount” and “target” are both copied from the

source code. This mechanism causes the user notice to be

closely related to the source code. Even though the existing

documentation generation approaches have achieved a huge

success for general code comments generation (e.g., comments

for Java method [7][8][9][10][11]), it is not clear whether

they can be successfully applied to user notice generation

for smart contracts. How to copy variable names correctly

from the smart contracts is still challenging for these deep

learning models. (ii) Data Hungry. Compared with other

popular programming languages (i.e., Java), it is more difficult

to collect large-scale datasets for smart contracts. Even though

the Ethereum blockchain has accumulated a great number

of smart contracts, data hungry problem still exists. That

is, only a small proportion of smart contracts have user

notices. According to our preliminary study, only 11,409 out

of 54,739 smart contracts contain user notices; if we look at

the functions, the proportion is even smaller. How to utilize

the limited labeled data for generating accurate user notice is

challenging for this work.

In this paper, we propose a new approach named SMART-

DOC to address the aforementioned challenges. We aim to

understand functions in smart contracts and automatically

generate user notices (i.e., @notice) for functions in a smart

contracts. The main idea of our approach is two-folds: (1)

while generating user notice, SMARTDOC can predict a word

or copy a token from source code. It exploits Transformer [12]

equipped with Pointer mechanism to predict user notice. Exist-

ing code comment generation approaches usually use Recur-

rent Neural Network (e.g., LSTM and GRU) to generate code

comments. However, these techniques are difficult to capture

long-range dependencies between code tokens. In this paper,

we exploit the Transformer architecture that can generate user

Fig. 2. An example of an end-user submitting a transaction with (on the
right) and without (on the left) user notice

notices to reinforce the capability of capturing the long-range

dependencies between code tokens. Considering the dynamic

expression mechanism, many words in the user notice can

be copied from the smart contract functions. Therefore, we

integrate the Pointer generator in our approach to overcome

the first challenge. The Pointer mechanism can copy a word

by pointing tokens in source code. (2) In order to alleviate the

limitation of minimal labeled data, we propose to use transfer

learning [13] that transfers the knowledge of general comment

generation for Java methods into user notice generation for

smart contract functions. Solidity and Java languages are

somewhat similar in that both are object-oriented and high-

level programming languages. Models that have learnt how to

convert Java methods into comments can be a good start to

the user notice generation.

To evaluate our proposed model, we extract 7,878

〈function, notice〉 pairs from 54,739 verified smart con-

tract. The automatic evaluation results show that SMARTDOC

achieves the best performance when compared with baselines

including attendgru [11], ast-attendgru [11], and Re2Com [10]

regarding the he BLEU score and ROUGE-L score. To explore

the practitioners’ perspective on the generated notice, we also

conduct a human evaluation. Each practitioner is asked to

evaluate user notice generated by various approaches from

three aspects, the similarity of generated notice and human-

written notice, naturalness (grammatical correctness and flu-

ency) of the generated notices, and their informativeness (the

amount of content carried over from the input code to the

generated notices, ignoring fluency of the text). Experiments

show that our approach can achieve the best performance when

compared to the baseline techniques.

The main contributions of this paper are as follows:

• We are the first to investigate characteristics of smart

contract user notices. Our study highlights a problem

that has been neglected in the literature but has practical

implications.

• We propose a novel approach SMARTDOC for smart

contract user notice generation, which aims to help end-

users understand smart contracts when they are executed

in Blockchain platforms.

• We integrate the Pointer mechanism into Transformer for
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better user notice prediction. The approach can generate

words or copy tokens from source code. We exploit

transfer learning to alleviate the effect of minimal labeled

data on training a deep learning model. The experimental

results show that our approach outperforms the state-of-

the-art techniques.

• We build the first dataset with respect to user notice which

contains 7,878 〈function, notice〉 pairs. To the best of

our knowledge, this is the first dataset of user notices for

smart contract functions.

This paper is organized as follows. In Section II, we provide

the preliminaries of smart contracts. Section III presents our

approach for smart contract user notice generation. Section

IV evaluates our approach on actual contracts collected from

the Ethereum blockchain. Section V and Section VI illustrate

experimental results and practitioners’ perspectives on the

generated user notice. Section VII discusses our proposed

approach. Section IX presents the related works. Section X

concludes the paper.

II. PRELIMINARIES

In this section, we present the data hungry issue related

to user notices. Then, we show the correlation between user

notice and transactions .

A. User notice hungry

Ethereum [14] has attracted increasing attention as

a blockchain platform and smart contracts deployed on

Ethereum have been applied to many business domains to

enable efficient and trustable transactions [15], [16]. When

developing smart contracts, Solidity provides a special form

of comments, named the Ethereum Natural Language Spec-

ification Format (NatSpec), to document contracts and func-

tions [17]. The @notice tag is the main NatSpec tag and

its audience is end-users. Considering that smart contract end-

users are often non-tech-savvy consumers, the user notices can

bridge the information gap between smart contract developers

and end-users. By interacting with the user notices, the end-

users can better assess the financial risks and make better

informed decisions. However, according to our preliminary

study, only a small proportion of smart contracts include user

notices. For example, among the 54,739 contracts that we have

collected, only 11,409 of them contain user notices; moreover,

only 4% of the functions in smart contracts have user notices.

B. User notice & Transactions

In smart contracts, functions are the executable units of

code and can be called by end-users. Intuitively, user notice of

functions can help end-users understand the smart contracts,

and thus improve the probability of smart contracts’ trans-

actions. To verify this conjecture, we collect the transaction

information of smart contracts and investigate whether smart

contracts with user notice have more transactions. Figure 3

presents the function distribution in smart contracts and the

the distribution of the average amount of transactions of smart

(a) Function distribution in Smart
Contracts

(b) The average amount of transac-
tions of Smart Contracts with differ-
ent amount of user notice

Fig. 3. Function Distribution and the Transaction Distribution of Smart
Contracts.

Contract Name: SMT
Transactions: 58,785
contract Token {

...
/// @notice send `_value` token to `_to` from `msg.sender`
/// ...
function transfer(address _to, uint256 _value) public returns (bool success);

/// @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from`
/// ...
function transferFrom(address _from, address _to, uint256 _value) public returns (bool success);

...
}

Contract Name: LooksCoin
Transactions: 25
contract ERC20 {

...
function transfer(address _to, uint256 _value) public returns (bool success);
function transferFrom(address _from, address _to, uint256 _value) public returns (bool success);

...
}

Fig. 4. Motivating Examples

contracts with different amount of user notice. From Figure

3(a), we can observe that almost all smart contracts have

less than 40 functions. Thus, we analyze the transactions of

them and find that smart contracts with more user notices

tend to have more transactions (shown in Figure 3(b)). This

is reasonable because detailed user notices can make end-

users well aware of the financial risks and improve the users’

confidence in the reliability of the smart contracts, therefore

end-users prefer to start a transaction through smart contracts

with more high-quality user notices.

Figure 4 shows the source code of two smart contracts, i.e.,

SMT [18] and LooksCoin [19], in which SMT has 58,785

transactions and LooksCoin has 25 transactions. Although

these two smart contracts implemented the same functions,

such as transfer and transferFrom in this example, the

SMT contract provided adequate user notices while LooksCoin

did not make any notice for end-users. The detailed user notice

can help end-users better understand of their operations and

thus make the smart contract more popular among end-users.

III. APPROACH

Figure 5 illustrates the overall framework of our approach

SMARTDOC. It mainly consists of three phases: pre-training,

fine-tuning, and application. In the pre-training phase, we

exploit the Java dataset prepared by Hu et al. [9] to pre-train

the model of SMARTDOC. Similar to Java, Solidity is also an

object-oriented programming language. The two programming

languages share similar coding conventions and syntax. There-

fore, the knowledge (such as variable naming conventions,

sequential information among code tokens) learned from Java

can be reused into Solidity. To better exploit the existing
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Fig. 5. Overview of our Approach

knowledge of source code, we transfer the pre-trained weights

of Java encoder into Solidity encoder.

In the fine-tuning phase, we further train the user notice

generation model on the corpus of annotated 〈fun, doc〉 pairs

extracted from smart contracts. The encoder is initialized by

the learned encoder from the pre-trained model. Except for

the source code encoder, parameters of other components are

trained from scratch. After training, we can get a trained

neural network. Then, given a new function of smart contract,

corresponding user notice can be generated by the trained

model.

Figure 6 is an overview of the network architecture of our

proposed deep learning based model. The architecture of our

model follows the Transformer framework [12], [20], [21],

which has been successfully adopted in machine translation

tasks. The architecture mainly consists of three submodules:

(1) Source code encoder. This module aims to represent

the source code and exploits the multi-head self-attention

to learn the sequential information of the source code. (2)

Notice generation decoder. This module aims to generate

notice through the self-attention layer and the encoder-decoder

attention layer. The encoder-decoder attention layer helps the

decoder focus on appropriate places in the input sequence. (3)

Pointer generator. The pointer generator [22] is used to copy

variables from source code.

We will elaborate on each component in this framework in

the following subsections.

A. Encoder

The encoder aims to learn representations for a smart

contract function X = x1, x2, ..., xm. Each token is embed-

ded into a vector (i.e., X = (x1, ...,xm)) before fed into

the encoder. To help SMARTDOC focuses on the important

information of the function X , the encoder adopts a multi-

head self-attention layer to capture important parts of the input.

Then the output of the multi-head self-attention layer is fed

into a feed-forward neural network.

The multi-head self-attention layer depicted in Figure 6

exploits scaled dot-product attention to calculate attention

weights. Given an input vector Ii ∈ R
d (in this paper, Ii

represents the embedding of each token), the first step is to

create three vectors, i.e., a query vector qi, a key vector ki,
and a value vector vi.

Fig. 6. The structure of our neural network

Then, we use the query vector qi of the ith input and the

key vector kj of each word of the input sentence to calculate

the attention scores through dot products. The attention score

against the ith input is computed as follows:

αi,j =
qi · kj√

d
(1)

where d is the dimension of qi and kj . The score determines

how much focus to place on the jth input as we encode the

ith input. Then, we get the normalized scores by a softmax
function:

α̂i,j = softmax(αi) =
exp(αi,j)∑
t exp(αi,t)

(2)

To keep the values of the tokens we want to focus on intact,

and drown-out irrelevant tokens, we multiply each value vector

by the softmax score and sum up the weighted value vectors:

zi =
∑

j

α̂i,jvj (3)

For faster processing, the calculation can be done in matrix

form, shown as follows:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (4)

In addition, SMARTDOC adopts the multi-head attention

with h heads to focus on different channels of the input

vectors. The outputs of h heads self-attention are concatenated

into one matrix and then are linearly projected by the linear

layer: A = concat(Attentioni(Qi,Ki,Vi))W , where W is

the parameter matrix of the linear layer. Then, the outputs of

the multi-head self-attention layer are fed into a feed-forward

neural network.

B. Decoder
The decoder component mainly consists of two parts,

namely, the self-attention layer and the encoder-decoder at-

tention layer. The self-attention layer is similar to that in the

encoder component except that it only deals with generated

words in the output sequence. Different from the self-attention

layer, the encoder-decoder attention layer learns the relation-

ship between the source code and the target user notice. The

calculation of attention is similar to self-attention. The Queries

matrix Q comes from the output of the self-attention layer and

the Key K and Values matrix V from the output of the encoder

component. For each step, the decoder outputs a state vector

v which can be turned into a word of a sequence.
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C. Pointer Generator

As described in Section II, the Dynamic Expressions Mech-
anism of smart contracts user notice causes that words in

user notices can be copied from the source code. So we

integrate the pointer generator [22] in our approach to solve

this problem.

The pointer generator is calculated from the vocabulary

distribution Pvocab, the copy distribution Pcopy , and the gen-

eration probability pgen.

1) Vocabulary Distribution: According to the Transformer

architecture, the vocabulary distribution pvocab is calculated

by a softmax layer which follows a linear layer:

Pvocab = softmax(W ∗ v) (5)

W is a learnable parameter that projects the vector b into a

larger vector (i.e., has the same size as the vocabulary size).

2) Copy Distribution: Copy distribution Pcopy is the proba-

bility of copying a word from the input sequence, i.e., source

code in this work. It is computed from the attention distri-

bution, namely, the output of the encoder-decoder attention

layer in Decoder. The calculation of attention distribution

between encoder and decoder is similar to the self-attention

layer excepted that the Key vector K is from the outputs

of the encoder R = (r1, ..., rm). The attention distribution

αj between the target words yj and the source code tokens

w1, ..., wm is:

αj = softmax(
QjK

T

√
dk

) (6)

Then, the copy distribution Pcopy is calculated as follows:

Pcopy =
∑

i:wi=yj

αj
i (7)

3) Final Distribution: At last, the model uses a soft switch

pgen to choose between generating a word from vocabulary

Pvocab or copying a token from the input source code Pcopy .

Similar to See et al. [22], the generation probability pgen is

for predicting yj calculated from the concatenation of decoder

input ŷj , decoder state vj , and the attention distribution αj :

pgen = σ(Wgen[ŷj−1;vj ;α
j ] + b) (8)

where Wgen and b are learnable parameters. σ is the Sig-

moid function and pgen ∈ [0, 1]. At last, the final distribution

for yj is:

P (yj) = pgenPvocab + (1− pgen)Pcopy (9)

D. Transfer Learning

During the training process, deep learning models need

large amounts of labeled data. However, the parallel data

of smart contract function and notice is limited. To better

learn the latent knowledge in smart contracts, we exploit

the transfer learning technique to reuse learned knowledge.

Transfer learning is an effective technique to alleviate the data

hungry issue. Transfer learning goes beyond specific tasks

and domains (in this paper, comment generation), and tries

to leverage knowledge from pre-trained models and use it to

solve target problems (in this paper, user notice generation).

Considering the features of smart contract functions, we select

comment generation for Java methods as the source task TS
to learning features of programming language.

The learned knowledge of the Java method, namely, source

domain DS , is then transferred into the target task TT .

1) Pre-training Procedure: To get a good code represen-

tation model for Solidity functions, we first pre-train our

model on the Java corpus DS . This is reasonable due to

the following reasons. First, the Java corpus is much larger

than the size of the Solidity functions (i.e, 11,409 ), which

has provided sufficient data sets for training a comprehensive

model. Second, the Solidity language is similar to the Java

language with respect to their grammars and syntax; these

similar features learned from Java corpus may also be effective

for Solidity functions. To pre-train the model, we exploit the

encoder to learn the semantic representation of Java methods

and use the decoder to generate Java comments according

to the learned representation. The encoder and the decoder

are introduced above. The pre-trained encoder contain the

knowledge that convert a source code in Java language to

the semantic representation. Thus, we can obtain the Java

method knowledge DS by accessing the pre-trained encoder

parameters.

2) Fine-tuning Procedure: When the model is pre-trained,

we then fine-tune it on the user notice generation task. The

fine-tuning process can quickly adapt the knowledge from the

Java pre-trained model to learn the code semantics and struc-

tures of Solidity functions. During the fine-tuning procedure,

we reused the pre-trained encoder to learn the representation of

smart contract functions. The downstream task of generating

user notices can be implemented by a decoder which receives

user notice representations from the pre-trained encoder. In

this way, we can reuse the pre-trained knowledge from the

Java programming language.

IV. EVALUATION

In this section, we firstly describe the evaluation corpus

of the task. We then introduce the baselines to compare

and evaluation metrics. Lastly, we explain our experimental

settings. The replication package is available1.

A. Dataset

We use the raw smart contract dataset provided by Chen

et al. [23], which contains 54,739 verified Solidity files (each

file may contain multiple smart contracts) crawled from Ether-

scan [24]. We describe how we prepared the dataset for user

notice generation as follows.

Preprocessing: First, we exploit the Solidity-parser [25] to

parse smart contracts and extract functions. We exclude the

Constructor functions since they are trivial to generate notice

for such functions. As Solidity-parser does not support Nat-

Spec comments extraction, we define regular expressions to

1https://github.com/xing-hu/SmartDoc
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TABLE I
THE STATISTICS OF OUR COLLECTED SMART CONTRACTS AND FUNCTIONS

Contract Function
Functions with

User notice
Average Function LOC

28,2793 1,296,556 51,567 6.34

(a) Code length distribution (b) User notice length distribution

Fig. 7. Length distribution of the training data

extract NatSpec comments that are tagged with @notice for

functions. Table I provides the statistics of the preprocessed

dataset. We extract 1,296,556 functions from smart contracts

and get 51,567 functions with user notices. The average

number of Lines of Code (LOC) of smart contract functions

is 6.34.

Filtering: Then, we extract the user notices (NatSpec com-

ment labeled @notice) from smart contract functions and

filtered out non-English samples. Considering that duplicate

code has negative impacts on neural networks and introduces

bias in evaluation, we remove duplicate functions and user

notices. Finally, we get 7,878 〈function, notice〉 pairs.

Generating Training/Test sets: We split dataset into training

set and test set. We randomly select 1k pairs for testing and

the rest for training. Figure 7 illustrates the length distribution

of functions and user notice on the training data. We find that

more than 96% code snippets have less than 200 tokens and

user notice has less than 50 words. In addition, the mode of

their lengths are 30 and 10, respectively.

Tokenization: To convert functions into sequential text, we

tokenize the source code via Solidity-parser. Then, we tokenize

the user notice by Natural Language Toolkit (NLTK) [26].

The vocabulary size of code and notice is 17,844 and 4,692,

respectively.

B. Baselines

We compare our model with the following baselines:

1) attendgru: attendgru [11] exploits the attentional

seq2seq model to generate code comment. It includes an

encoder and a decoder that are both gated recurrent unit

(GRU) [27]. The encoder aims to learn the representation

from the source code and the decoder generates comments

from learned representation. They propose to use an attention

mechanism to attend words in the output summary sentence to

words in the code word representation. During the prediction

phase, they use a greedy search algorithm for inference that

minimizes the number of experimental variables and compu-

tation cost.

2) ast-attendgru: ast-attendgru [11] integrates struc-

tural information on the basis of attendgru. The structural

information comes from the abstract syntax tree (AST). In

addition to the code encoder, it also contains an encoder to pro-

cess ASTs. They traverse ASTs into sequences by Structure-

based Traversal (SBT) proposed by Hu et al. [8] before fed

into neural networks. A separate attention mechanism is used

to attend the words to parts of the AST. Then, they concatenate

the vectors from each attention mechanism to create a context

vector. Finally, they predict the comment one word at a time

from the context vector, following what is typical in seq2seq

models.

3) Re2Com: Re2Com [10] is the state-of-the-art code

comment generation approach that integrates three kinds of

techniques, namely, IR, template, and neural networks. The

model consists of two modules: a Retrieve module and a

Refine module. In the Retrieve module, Re2Com exploits IR

techniques to retrieve the most similar code snippet from a

large parallel corpus of code snippets and their corresponding

comments, and treat the comment of the similar code snippet

as an exemplar. In the Refine module, it applies a novel

seq2seq neural network whose encoder takes the given code

snippet, the similar code snippet, and the exemplar as input

and the decoder generates the token sequence of a comment.

C. Evaluation Metrics

1) BLEU: Following Wei et al. [10], we evaluate different

approaches using the metric BLEU [28]. It calculates the

similarity between the generated notice and references. The

similarity is computed as the geometric mean of n-gram

matching precision scores multiplied by a brevity penalty to

prevent very short generated sentences:

BLEU = BP · exp(
N∑

n=1

wnlogpn) (10)

where pn is the precision scores of matched n-grams. In this

paper, N is set to 4 that is the same as previous studies.

It is widely used in various tasks of automatic software

engineering, such as API sequence generation [29], comment

generation [8], [9], [10], and commit message generation [30].

We reuse the evaluation script provided by Wei et al. [10] to

compute the BLEU scores.

2) ROUGE-L: ROUGE-L [31] is the other widely used

metric that takes into account sentence level structure similar-

ity naturally and identifies longest co-occurring in sequence

n-grams automatically. For two sentences X (with length m)

and Y (with length n), in which X is a reference and Y is

a candidate generated sentence. ROUGE-L first calculates the

precision and recall the longest common subsequence of them,

i.e.,

Plcs =
LCS(X,Y )

n
(11)

Rlcs =
LCS(X,Y )

m
(12)
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TABLE II
COMPARISONS OF SMARTDOC WITH EACH BASELINE IN TERMS OF BLEU

AND ROUGE-L (*P<0.05)

Approaches BLEU B1 B2 B3 B4 R-L

attendgru 29.01 37.39 28.52 26.41 25.15 38.48
ast-attendgru 26.01 33.75 25.71 23.61 22.34 34.51

Re2Com 29.37 41.39 28.99 25.77 24.07 34.55
SMARTDOC 47.39* 56.51* 46.78* 44.27* 43.08* 51.86*

Then, the final score is calculated according to Plcs and Rlcs:

Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
(13)

We follow the default value of β provided in [31] and set

it as 1.

D. Training Details
We implement SMARTDOC on top of TensorFlow [32]. Both

token embeddings and hidden size are set to 256 dimensions.

In addition, the number of attention heads and blocks are set

to 4 and 3, respectively. All parameters are optimized using

Adam [33] with the initial learning rate of 0.0005. Following

Vaswani et al. [12], we increase the learning rate linearly

for the first 4000 steps (i.e., warmup steps) and decrease it

thereafter proportionally to the inverse square root of the step

number. During the training, the batch size is set to 32. To

mitigate overfitting, we exploit dropout mechanism and set

the dropout rate as 0.1. We set the maximum length of the

encoder to 200 and the maximum length of the decoder to 50.

Training runs for 50 epochs. We conduct our experiments on

a Linux server with an NVIDIA GeForce RTX 2080Ti GPU

having 10 GB memory.

V. RESULTS

To gain a deeper understanding of the performance of our

approach, we conduct analysis on our evaluation results in this

section. Specifically, we focus on three research questions:

• How effective is our SMARTDOC for generating user

notice given smart contract functions?

• How effective is each component of SMARTDOC?

• How efficient is SMARTDOC?

A. RQ1: SMARTDOC Overall Effectiveness (vs. Baselines)
In this RQ, we want to investigate how effective our

approach is and how much performance improvement our

approach can achieve over the baselines.
1) Experimental Setup: We apply our approach and the

baseline methods (i.e., attendgru, ast-attendgru, and

Re2Com) on the collected dataset, and compare their perfor-

mance in terms of BLEU and ROUGE-L. To check whether

the performance differences between SMARTDOC and baseline

approaches are significant, we run Wilcoxon signed-rank tests

[34] at the confidence level of 95%. For each approach, we

collect 1,000 scores (one for each case) considering every

evaluation metric. Then, we conduct the Wilcoxon signed-rank

test for each pair of competing approaches considering these

scores.

TABLE III
EFFECTIVENESS OF EACH INCOMPLETE VARIANT OF OUR APPROACH IN

TERMS OF BLEU AND ROUGE-L.(*P<0.05)

Approaches BLEU B1 B2 B3 B4 R-L

Transformer 43.52 52.02 43.2 40.56 39.34 49.91
Transformer+P 45.12 53.23 44.59 42.34 41.25 48.55
SMARTDOC 47.39* 56.51* 46.78* 44.27* 43.08* 51.86*

2) Results: Table II shows the BLEU and ROUGE-L scores

for our approach SMARTDOC and the baseline techniques.

We can observe that ast-attendgru has the worst perfor-

mance and our approach SMARTDOC outperforms all baseline

models significantly. Compared to baselines, the improvements

of our proposed approach SMARTDOC are more than 60% and

35% in terms of BLEU and ROUGE-L, respectively. All the

p-values are substantially smaller than 0.05, which means our

approach significantly improves over the baseline approaches.

B. RQ2: Ablation Analysis

In this paper, we use the Transformer to model the source

code of functions in smart contracts. Then, we exploit the

pointer mechanism to copy words from the source code during

the user notice generation process. To alleviate the limitation

of minimal labeled data, we also leverage the transfer learning

to utilize the pre-trained knowledge before predicting the user

notice. We want to investigate the impacts of these components

on the performance of our approach.

1) Experimental Setup: To illustrate the importance of

each component, we compare our approach with two of its

incomplete variants:

• Transformer removes both the pointer mechanism and

the pre-trained knowledge.

• Transformer+P is transformer with pointer and only

removes the pre-trained knowledge.

We can observe the effectiveness of pointer mechanism

and transfer learning technique by comparing SMARTDOC

and Transformer. Then, we compare SMARTDOC and

Transformer+P to measure the improvements from the

pre-trained knowledge. Similar to RQ1, BLEU and ROUGE-L

are used to evaluate our approach and the two variants. The

Wilcoxon signed-rank test is also computed.

2) Results: The effectiveness of the two variants are

demonstrated in Table III. We can observe that our approach

SMARTDOC outperforms the other two variants on each met-

ric. Compared to experimental results of baselines shown

in Table II, both Transformer and Transformer+P
outperforms baselines. Specifically, the Transformer boosts

the performance by a large margin (more than 40% in terms

of BLEU and 30% in terms of ROUGE-L) on user notice

generation compared to baselines that are based on recurrent

neural network. The integration of Pointer mechanism im-

proves the performance further (with improvement of about

4% in terms of BLEU) – as compared to Transformer.
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Source Code:
function vest() external{ 

uint numEntries = numVestingEntries(msg.sender);
uint total;
for (uint i = 0; i < numEntries; i++) { 

uint time = getVestingTime(msg.sender, i);
if (time > now) { break; } 
uint qty = getVestingQuantity(msg.sender, i);
if (qty == 0) { continue;} 
vestingSchedules[msg.sender][i] = [0, 0];
total = total.add(qty);

} 
if (total != 0) { 

totalVestedBalance = totalVestedBalance.sub(total);
totalVestedAccountBalance[msg.sender] =

totalVestedAccountBalance[msg.sender].sub(total);
synthetix.transfer(msg.sender, total);
emit Vested(msg.sender, now, total);

} 
}

Fig. 8. A test example with copied words

It helps copy words from smart contract instead of gen-

erating words during the prediction phase. However, the

ROUGE-L of Transformer+P is slightly lower than that

of Transformer. The reason of the slight drop is that

the Pointer usually copies one word instead of N-grams,

thus, the longest co-occurring n-grams are lower than se-

quences generated by the Transformer. Compared to the

Transformer+P, SMARTDOC exploits the transfer learning

technique to alleviate the limitation of the amount of the

dataset. We can observe that it improves about 4% and 7%

in terms of BLEU and ROUGE-L, respectively. In addition,

the P-value of the improvements is less than 0.05 that indicates

out approach SMARTDOC significantly outperforms variants.

3) Effectiveness of Pointer mechanism: In this paper, we

integrate Pointer mechanism to copy words from source code

during the user notice prediction. It further improves the

accuracy of generated notice. To figure out which tokens

will be copied into the notice, we manually inspect the test

results of the predictions. We find that our approach usually

copies tokens with natural features, such as function names

and parameter names. Figure 8 shows an example whose

generated notice contains words copied from source code.

Word “vested” is directly copied from the function name

in the emit statement. In addition, some words are copied

from the sub-words in specific parameter names. For example,

“schedule” is derived from parameter “vestingSchedules”.

C. RQ3: Time Costs of our Approach

Neural network models need to be trained before being

adapted to generate user notice for smart contracts. The

training process is conducted offline and can be used to

make prediction online. In this research question, we want to

investigate the training time cost and the test time cost of our

approach to better understand the practicality of our approach

SMARTDOC.

1) Experimental Setting: To measure the time complexity

of our approach and other baselines, we record the start

time and the end time of their training process and the test

process. For fair comparison, all models are trained on the

TABLE IV
TIME COSTS OF DIFFERENT APPROACHES

Approaches Train Test Test One Params

attendgru 0.5h 3.04s 0.004s 16.9 M
ast-attendgru 0.9h 4.67s 0.005s 17.4 M

Re2Com 8.2h 16s 0.02s 18.1 M
SMARTDOC 0.59h 72s 0.07s 25.0M

same machine containing a NVIDIA GeForce RTX 2080Ti

GPU with 10 GB memory.

2) Results: Table IV illustrates the time costs of our ap-

proach and baselines. Compared to baselines, our approach

SMARTDOC has the most parameters with about 25M trainable

parameters. Re2Com incurs the highest cost (about 8.2 hours)

to train the model well. During the test phase, approach

attendgru is the most efficient approach; on average, it takes

0.004 second to recommend user notice. However, the quality

of user notice generated by it is limited. Our approach,

SMARTDOC takes about 0.59 hour to be trained well and takes

about 70ms to recommend a user notice. The experimental

results demonstrate that our approach is efficient for practical

uses.

VI. HUMAN EVALUATION

Although automatic metrics, such as BLEU and ROUGE-

L, can evaluate the gap between the generated user doc-

umentation and reference texts written by humans, it can

not reflect the human perceptions on the generated user

documentation. We follow Wei et al. [10] to conduct human

evaluation. The human evaluation measures three aspects,

including the Similarity of generated user documentation

and references, Naturalness (grammaticality and fluency of

the generated user documentation), and Informativeness (the

amount of content carried over from the input code to the

generated user documentation, ignoring fluency of the text).

The scores range from 0 to 4 (the higher the better). We

invite 10 volunteers with 1-3 years of blockchain or smart

contract experience and have good English proficiency for

30 minutes each to evaluate the generated user documen-

tation in the form of a questionnaire. We randomly select

100 smart contract functions and provide references (human-

written user documentation) for each function. In addition, we

also provide four machine-generated user documentation that

is generated by attendgru, ast-attendgru, Re2Com,

and SMARTDOC , respectively. Each participant is asked to

score each sample considering similarity, naturalness, and

informativeness aspects. All these scores are integers, ranging

from 0 to 4. During the annotation, participants are allowed

to search the Internet for related information and unfamiliar

concepts. Participants do not know which approach produces

which texts.

Table V presents the human evaluation results of our ap-

proach and baselines. SMARTDOC outperforms other tech-

niques in three aspects, especially in Informativeness (im-

provements more than 30%) and Similarity (improvements
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TABLE V
THE RESULTS (STANDARD DEVIATION σ IN PARENTHESES) OF HUMAN

EVALUATION (*P<0.05)

Approaches Informativeness Naturalness Similarity

attendgru 1.80 (1.44) 3.03 (1.04) 1.71 (1.44)
ast-attendgru 1.85 (1.43) 3.06 (1.08) 1.74 (1.35)
Re2Com 2.07 (1.37) 3.24 (0.86) 2.06 (1.30)
SMARTDOC 2.69* (1.31) 3.45* (0.73) 2.63* (1.34)

Fig. 9. The count of similarity scores of the generated user notices by
SMARTDOC compared with human-written user notices.

more than 28%). Naturalness scores of the four approaches

(all more than 3) are much higher than Informativeness and

Similarity scores, indicating that almost all generated user

documentation is grammatical and fluent. Similar to Wei

et al [10], the difference in standard deviation of the four

methods is also very small, indicating that their scores are

about the same degree of concentration. All the p-values are

substantially smaller than 0.05, which shows the improvements

of our proposed model are statistically significant.

Figure 9 shows the count of similarity scores of user notices

generated by SMARTDOC. We can find that 34% generated

user notices are almost the same as human-written ones (i.e.,

generated user notices with score 4). 29% generated user

notices are scored as 3 that means 29% of them share many

similar words and express similar meanings. In other words,

63% of user notices generated by SMARTDOC are similar to

human-written ones and can be added to the source code.

VII. DISCUSSION

In this section, we discuss the performance of the generated

user notice and analyze the effectiveness of our approach.

A. Cross-Smart contract validation

Different from mature smart contracts with many transac-

tions, new smart contracts often lack sufficient training data.

Thus it is difficult to directly apply our approach to generate

user notice for a new smart contract. This problem may be

overcome through the cross-project prediction, which uses the

data collected from mature smart contracts to train a model,

and applies the trained model to make predictions for new

smart contracts. We want to investigate whether our approach

is still effective for the cross-project setting.

TABLE VI
THE AVERAGE BLEU AND ROUGE-L SCORES OF SMARTDOC AND

BASELINES IN CROSS-PROJECT SETTING.

Approaches BLEU B1 B2 B3 B4 R-L

attendgru 30.83 38.62 30.34 28.4 27.15 39.67
ast-attendgru 28.5 35.99 28.03 26.18 25 36.32

Re2Com 30.63 40.15 30.13 27.68 26.31 36.10
SMARTDOC 43.44 50.26 42.81 41.11 40.24 47.79

1) Experimental Setting: We conduct a cross-project vali-

dation experiment for our collect smart contracts. This process

repeats 5 times and we train various models on functions from

80% smart contracts and test these models on functions from

the rest 20% smart contracts each time. BLEU scores and

ROUGE-L are used to measure the effectiveness of cross-

project predictions.

2) Results: Table VI illustrates the cross-project validation

for user notice generation. It shows the average scores from

the 5 times experiments. We can observe that our approach

SMARTDOC still outperforms baselines significantly. Com-

pared to results in RQ1, the performance of baselines (i.e.,

attendgru, ast-attendgru, and SMARTDOC) improves

whereas SMARTDOC decreases in cross-project setting. The

smart contracts come from different domains, which intro-

duces the decrease of performance of our approach SMART-

DOC. For baselines, they have more samples to train the

models and can improve the performance.

B. Investigating the effectiveness of Transfer Learning

To address the user notice hungry problem, we employ

the Transfer Learning technique to transfer the knowledge of

comment generation for Java into user document generation

for smart contracts. We would like to investigate whether the

Transfer Learning is effective for general neural models. To

do this, we first analyze the convergence time of SMARTDOC

with/without transfer learning, after that, we further explore

the performance of baseline models after adding Transfer

Learning techniques.

1) Experimental Settings.: First, we record the results of

SMARTDOC and Transformer+P for every 2,000 steps

(about 10 epochs) during the training process, and compare

their convergence. Then, we equip each baseline with transfer

learning technique to explore their performance with trans-

ferred knowledge. Similar to SMARTDOC , we first pre-train

various models with Java dataset. As Leclair et al [11] provide

trained models in their replication, we reuse their trained

models before training on the smart contract dataset. Then,

we reuse the weights of source code encoder and fine tune

them on the smart contract dataset. Finally, we evaluate them

in terms of BLEU scores and ROUGE-L.

2) Results.: Figure 10 presents the convergence of SMART-

DOC and Transformer+P, in which SMARTDOC uses

transfer learning whereas Transformer+P not. We can ob-

serve that SMARTDOC outperforms Transformer+P about

15% in terms of ROUGE-L after training 2,000 steps. In
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Fig. 10. The convergence of SMARTDOC (with transfer learning technique)
and Transformer+P

TABLE VII
COMPARISONS OF SMARTDOC WITH EACH BASELINE IN TERMS OF BLEU

AND ROUGE-L WHEN INTEGRATED TRANSFER LEARNING.

Approaches BLEU B1 B2 B3 B4 R-L

attendgru + T 29.05 38.92 28.58 26.07 24.57 40.15
ast-attendgru + T 29.01 38.43 28.66 26.13 24.6 38.92

Re2Com + T 25.66 39.59 25.46 21.62 19.89 31.32
SMARTDOC 47.39 56.51 46.78 44.27 43.08 51.86

addition, we find that the convergence of Transformer+P
is slow by 2,000 steps compared to SMARTDOC. In addition,

we can observe that the SMARTDOC convergence curve has

higher start, higher slope, and higher asymptote. The higher

start means that our model has the better initial ability (before

refining the model) to generate user notice. The higher slope

indicates that rate of improvement of our model during train-

ing is steeper. Finally, the higher asymptote shows a better

converged skill of SMARTDOC.

Table VII shows the results of all models integrated the

transfer learning technique. We can find that attendgru and

ast-attendgru perform better when integrated transfer

learning and ast-attendgru has biggest improvement

(11.8% in terms of BLEU) among them. However, Re2Com

performs worse when integrated transfer learning technique.

The effectiveness of Re2Com comes from two parts, template

notice and the source code. As the pre-trained knowledge

of source code is affected by the retrieved template notice,

thus lead to worse performance of Re2Com. In summary, the

transfer learning helps models leverage existing knowledge

when training on a new task. It can alleviate the limit of the

amount of dataset and improve performance of neural models.

C. Investigating the User Notice with Low Scores

We are also curious about why our approach fail to generate

accurate user notice. The reasons are demonstrated in the

following subsections.

1) Abbreviations: Different from other software, smart con-

tracts development is related to currencies and finance. Thus,

there are many abbreviations in human-written notice. For ex-

ample, Figure 11 illustrates an example human-written notice

containing many abbreviations, including “DOL”, “VAULT”,

and “ETH”. However, in the user notice generated by SMART-

Source Code:
function buy() payable public {

require(!frozenAccount[msg.sender]);
require(msg.value > 0);
buyToken();

}

Fig. 11. A test example whose reference contains abbreviations

Source Code:
function approveAndCall(address _spender, uint256 _value,

bytes _extraData) returns (bool success) { 
mimonedarecipiente spender = mimonedarecipiente(_spender);
if (approve(_spender, _value)) { 

spender.receiveApproval(msg.sender,_value,this,_extraData);
return true;

} 
}

Fig. 12. A test example with missed details

DOC, these abbreviations are replaced by the full version of the

word or phrase. “DOL” is the symbol for “metadollar” [35]

that is generated by SMARTDOC. Both “ether” and “ETH”

represent the native cryptocurrency token of the Ethereum

platform. Although these words are regarded as error tokens

during evaluation, they describe the same meaning.

2) Less detailed information: Some details are missed in

the generated notice. For example, Figure 12 illustrates an

example whose details are missing in the generated user notice.

We can find that information “no more than ‘ value’ tokens”

is missing in the notice generated by SMARTDOC. This

missed information causes the low score during evaluation.

In addition, we find that the missed information is hard to be

learned from the given input source code. It is usually implied

in API invocations, such as “no more than ‘ value’ tokens”

can be obtained in the invocation of API “approve”.

D. User notice generation VS. Comment generation

Problem Difference: The audience of code comments is

developers who can understand the source code, and code

comments often contain many details such as the imple-

mentation details. Considering the audiences of smart con-

tracts include developers and end-users, comments of smart

contracts are divided into two types, i.e., the comment for

developers (tagged with @dev) and the comment for end-users

(tagged with @notice). Comments for developers (tagged

with @dev) are similar with general code comments, while

comments for end-users (tagged with @notice) are a special

type of comment, whose audience is contract end users who

are unable to read the source code. We refer to this kind of

special comment as user notice in this study.

Technique Difference: Compared to code comments, user

notices support dynamic expression mechanisms that usu-

ally copy variable names from source code. These variables
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will dynamically be replaced by corresponding values when

end users interact with the contract. Compared to comment

generation, user notice generation is more dependent on the

copy mechanism. In addition, the dataset of code comment

generation is large enough to train a model well. However, the

dataset for user notice generation is limited, thus, we need to

exploit pre-trained models to better avoid overfitting on small

data.

VIII. THREATS TO VALIDITY

We have identified the following threats to validity among

our study:

Internal Validity In this paper, we exploit Java dataset to pre-

train the models and then use the learned knowledge by using

the trained parameters. Pre-trained knowledge learned from

different programming languages may bias the effectiveness of

our approach on user notice generation. We will try to employ

datasets in different programming languages (e.g., Python and

Javascript) to pre-train the code knowledge in the future.

Data Validity We use the smart contracts provided by Chen et

al. [23] that contains 54,739 smart contracts. However, because

a very large number of smart contracts are copied from other

smart contracts [36], [37], [38], [39], the number of collected

〈function, notice〉 pairs is limited after deduplication. The

selected contracts may not be sufficiently diverse or repre-

sentative of all contracts. To mitigate the threat, we conduct

experiments on cross-project setting. The trained models are

applied to generate user notice for new smart contracts. We

believe that our approach is effective for new smart contracts

if it performs well on cross-project validity.

External Validity We validate our approach by comparing

the generated user notice and human-written user notice. We

assume that human-written user notice is correct. However,

human-written user notice may also not correct sometimes and

we can not ensure the quality of it. For example, some human-

written user notice may be outdated during the development.

Therefore, the results may be biased and incomprehensive.

IX. RELATED WORK

Code comment generation is the most relevant task

which aims to generate natural descriptions for code snip-

pets. Manually-crafted templates [40], [41], [42], IR tech-

niques [43], [7], [44], [45], and neural models [11], [8], [10],

[46], [47] are widely used in automatic comment generation.

Approaches based on manually-crafted templates usually

leverage stereotype identification techniques to generate com-

ments for code snippets. Sridhara et al. [41] propose to con-

struct Software Word Usage Model (SWUM) to select relevant

keywords from source code and then leverage them to con-

struct natural language descriptions from defined templates.

Mcburney et al. [42] exploit SWUM to extract keywords from

Java methods and use PageRank to select the most important

methods from a given context.

Information Retrieval (IR) techniques are widely used in

comment generation task. Generally, these approaches first

retrieve similar code snippets with comments and take their

comments as the output. Latent Semantic Indexing (LSI),

Vector Space Model (VSM), and Latent Dirichlet Allocation

(LDA) are widely used in comment generation. Kuhn et

al. [43] propose to use the Latent Semantic Indexing (LSI)

technique to extract topics that reflect the intention of source

code. Haiduc et al. [7] exploit two IR techniques, Vector

Space Model (VSM) and LSI, to analyze methods and classes

in Java projects and generate short descriptions for them.

Different from these works, Wong et al. [44], [45] exploit

clone detection techniques to retrieve similar code snippets

and use corresponding comments for comment generation.

In recent years, considerable attention has been paid to

neural networks on comment generation. Iyer et al. [48] first

propose to utilize the encoder-decoder framework to generate

comments, in which the encoder is token embeddings of source

code and the decoder is an LSTM. The experimental results

on C# and SQL comment generation illustrate that neural

networks perform better than traditional techniques. Soon

after, Hu et al. [8] propose to integrate structural information

while generating comments for Java methods. They propose a

new approach to traverse an AST into a sequence and encode

the sequence by an LSTM. Some studies [49], [10] combine

the IR-based techniques and deep-learning-based techniques to

generate code comments. Wei et al. [10] propose an approach

that takes the advantages of manually-crafted templates, IR,

and neural networks techniques. It first retrieves a similar code

snippet from the training set and uses its comment as the

exemplar to guide the neural model for comment generation.

X. CONCLUSION AND FUTURE WORK

In this paper, we propose a new approach, SMARTDOC,

based on Transformer, Pointer mechanism, and transfer learn-

ing technique for smart contract user notice generation. We

have evaluated our approach with 1,000 pairs of smart contract

functions and their user notice. Experimental results show

that it can effectively generate user notice for smart contracts

and outperforms the state-of-the-art approaches significantly.

In addition, we conduct human evaluation to investigate the

human perspectives on the generated user notice. The results

show that our approach can generate natural and informative

user notice, and the generated user notice is much more similar

to the reference text than baselines.
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