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Abstract—Smart contracts have been increasingly used together with blockchains to automate financial and business transactions.

However, many bugs and vulnerabilities have been identified in many contracts which raises serious concerns about smart contract

security, not to mention that the blockchain systems on which the smart contracts are built can be buggy. Thus, there is a significant

need to better maintain smart contract code and ensure its high reliability. In this paper, we propose an automated approach to learn

characteristics of smart contracts in Solidity, which is useful for clone detection, bug detection and contract validation on smart

contracts. Our new approach is based on word embeddings and vector space comparison. We parse smart contract code into word

streams with code structural information, convert code elements (e.g., statements, functions) into numerical vectors that are supposed

to encode the code syntax and semantics, and compare the similarities among the vectors encoding code and known bugs, to identify

potential issues. We have implemented the approach in a prototype, named SMARTEMBED,1 and evaluated it with more than 22,000

smart contracts collected from the Ethereum blockchain. Results show that our tool can effectively identify many repetitive instances of

Solidity code, where the clone ratio is around 90 percent. Code clones such as type-III or even type-IV semantic clones can also be

detected accurately. Our tool can identify more than 1000 clone related bugs based on our bug databases efficiently and accurately.

Our tool can also help to efficiently validate any given smart contract against a known set of bugs, which can help to improve the users’

confidence in the reliability of the contract.

Index Terms—Smart contract, code embedding, clone detection, bug detection, ethereum, blockchain

Ç

1 INTRODUCTION

A Smart Contract, a term coined by Nick Szabo in 1994 [1],
is a program that can be triggered to execute any task

when specifically predefined conditions are satisfied. The
conditions defined in smart contracts, and the execution of
the contracts, are supposed to be trackable and irreversible in
such a way that minimizes the need for trusted intermediar-
ies. They are also supposed to minimize either malicious or
accidental exceptions in order to ensure trustworthiness of
any business transactions implied by the smart contracts.

In recent years, along with widely-deployed cryptocur-
rencies (e.g., Bitcoin, Ethereum, and many others) on dis-
tributed ledgers (a.k.a., blockchains), smart contracts have
obtained much attention and have been applied to many
business domains to enable more efficient and trustable
transactions. The overall market capitalization of cryptocur-
rencies is more than 200 billions in USD as of August 2018

[2]. Many crytocurrencies involve various kinds of smart
contracts, and a smart contract in the blockchains often
involves cryptocurrencies worthy of millions of USD (e.g.,
DAO [3], Parity [4] and many more). This gives much incen-
tive to hackers for discovering and exploiting potential
problems in smart contracts, and there is a very significant
need to check and ensure the robustness of smart contracts.

Even though there have beenmany studies on the charac-
teristics of bugs in smart contracts and underlying block-
chain systems (e.g., [5], [6], [7], [8], [9]) and detection of smart
contract bugs (e.g., [10], [11], [12], [13], [14], [15], [16]), there
are still increasing needs to detect and prevent more and
more kinds of problems identified in smart contracts. A
major disadvantage of these existing bug detection tools is
that they require certain bug patterns or specification rules
defined by human experts in order to construct bug detectors
and/or codemodel checkers to check smart contracts against
the defined rules.With the high stakes in smart contracts and
race between attackers and defenders, it can be far too slow
and costly to write new rules and construct new checkers in
response to new bugs and exploits created by attackers.

In this paper, we propose a new approach that addresses
the above issue. We aim to enable efficient checking of smart
contracts and can evolve checking rules alongwith the evolu-
tion of code and/or bugs, based on our deep learning model
for smart contracts. The main idea of our approach is two
fold: (1) code and bug patterns, including their lexical, syntac-
tical, and even some semantic information, can be automati-
cally encoded into numerical vectors via techniques adapted
from word embeddings (e.g., [17], [18], [19], [20], [21])
enhancedwith basic program analyses and the availability of
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many smart contracts; (2) code checking can be essentially
done through similarity checking among the numerical vec-
tors representing various kinds of code elements of various
levels of granularity in smart contracts. This idea, with suit-
able concrete code embedding and similarity checking tech-
niques, can be general enough to be applied for various code
debugging and maintenance tasks. These include repetitive
(a.k.a. duplicate or cloned) contract detection, detection of
specific kinds of bugs in a large contract corpus, or validation
of a contract against a set of known bugs.2

We have built a prototype based on the idea, named SMAR-

TEMBED, for smart contracts written in the Solidity program-
ming language [22] used in the Ethereum blockchain [23].
We have collected 22,725 contracts in their Solidity source
code that are labelled as “verified” in the Ethereum block-
chain and 17 well-known buggy contracts from the Internet.
Our tool can then automatically generate the vector embed-
dings from the contract code collected from the blockchain
and provides a mechanism to compose vector embeddings
for any code fragment, either buggy or correct. All of these
vectors then go through similarity checking for different pur-
poses. Our evaluation results against 22,725 contracts show
that, for the tasks of clone detection, bug detection, and con-
tract validation, our approach can achieve comparable
results compared with specific tools such as Deckard [24],
SmartCheck [14].

The main contributions of this paper are as follows:

� We propose a new approach for Solidity code check-
ing based on code embedding and similarity check-
ing, which is applicable for various purposes, such
as similar contract code detection, bug detection,
and contract validation.

� We built a prototype SMARTEMBED based on the
approach, and evaluated it on more than 22,000
Solidity contracts collected from the Ethereum
blockchain.

� Our clone detection results show that our tool can
effectively identify many repetitive Solidity code
where the clone ratio is around 90 percent, and we
can detect more semantic clones accurately than the
commonly used clone detection tool Deckard.

� Our bug detection results show that SMARTEMBED can
identify more than 1,000 clone related bugs based on
our bug databases efficiently and accurately, which
can enable efficient checking of smart contracts with
changing code and bug patterns. For contract valida-
tion, our approach can capture bugs similar to known
ones with low false positive rates, the query for a
clone or a bug is quite efficient which can be sufficient
for practical uses.

This paper is organized as follows. Section 2 presents
related work on smart contract security and relevant techni-
ques. Section 3 presents our approach for smart contract
code embedding. Section 4 evaluates our approach on actual
contracts collected from the Ethereum blockchain. Section 6
discusses limitations of our approach and its evaluation.
Section 7 concludes the paper.

2 RELATED WORK

2.1 Smart Contract and Security Problems

Despite the fact that Ethereum and smart contracts are rela-
tively new, many studies have been performed on security
aspects of smart contracts. Some studies focus on creating
taxonomies of smart contract security vulnerabilities (e.g.,
[15], [25], [26], [27]). Others focus on specific bug detection.
For example, Loi et al. [12] build a symbolic execution tool
called OYENTE to detect four kinds of security bugs. Tikho-
mirov et al. [14] build a static analysis tool called SmartCheck
to automatically check for vulnerabilities and code smells.
Brown et al. [11] present a framework for analyzing runtime
safety and functional correctness of smart contracts via for-
mal verification; several types of vulnerability, such as reen-
trancy and exception disorders, can be identified by their
tool. Chen et al. [9] developed a security tool for identifying
gas costly programming patterns in smart contracts.

Although the aforementioned research has proposed
security analysis tools to find bugs in smart contracts, most
of those tools are built to discover specific types of potential
vulnerabilities, requiring manually constructed bug pat-
terns or specifications. To the best of our knowledge, no one
has yet considered how to make such tools more flexible
and adaptive to arbitrary new bugs by using word embed-
ding for smart contract code. Our work is the first to pro-
pose an approach for detecting smart contract bugs and
validating contracts via similarity checking of contract code
embeddings, especially the embeddings that take code
structures into consideration.

2.2 Word Embedding and Code Similarity

Embedding (also known as distributed representation [20],
[21]) is a technique for learning vector representations of
entities such as words, sentences and images. One of the
typical embedding technique is word embedding, which
represents each word as a fixed-size vector, so that similar
words are close to one another in the vector space [17], [18],
[19], [20].

Recently, an interesting direction in software engineering
is to use deep learning to compute and use vector represen-
tations of programs. For example, Mou et al. [28] propose to
learn vector representations of source code. They map the
nodes of abstract syntax trees to vectors. Following their
previous work, Mou et al. [29] propose a tree-based convo-
lutional neural network based on program abstract syntax
trees to detect similar source code snippets. Ye et al. [17]
embed words into vector representations to score a pair of
documents, and use StackOverflow questions and answers
as document corpora to train word embeddings. White
et al. [30] propose an automatic program repair approach,
DeepRepair, which leverages a deep learning model to
identify similarity between code snippets.

Different from these existing tools, our code embedding
methods are based on serialization of solidity parse tree for
different level program elements. To the best of our knowl-
edge, our work is the first to apply the code embeddings to
the specific domain of Ethereum smart contracts as inspired
by the promising results of employing deep learning to the
many other software engineering tasks (e.g., [31], [32], [33],
[34], [35], [36], [37]).

2. “Validation” in this paper is to check if a contract has no bug simi-
lar to the known bugs; it does not mean formal verification of the contract.
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2.3 Clone Detection, Bug Detection,
and Code Validation

A plethora of approaches have been investigated for differ-
ent tasks such as code clone detection, bug detection, and
code validation and/or program verification. All of the tasks
can be viewed as variants of the problem of finding “similar”
code, depending on the definition of similarity: code clone
detection is to search for code in a code base “similar” to a
given piece of code; bug detection is to search for code in a
code base “similar” to a known bug; and code validation is
to search for (non-existence of) code in a code base “similar”
to any bug. As our approach based on code embedding and
similarity checking is an instantiation of this general view, it
is related tomany such studies too.

For clone detection, many techniques in the literature
generally begin by generating some intermediate represen-
tations for code before measuring similarity. According to
source code representation, these techniques can be classi-
fied as text-based (e.g., [38], [39], [40]), token-based (e.g.,
[41], [42], [43]), tree-based (e.g., [24], [44], [45]), graph-based
(e.g., [46], [47], [48], [49]), semantic-based (e.g., [50], [51],
[52], [53]), deep-learning-based (e.g., [35], [54]), or a mixture.
Our approach complements those studies by applying word
embedding to smart contract code and its syntax structures
to search for smart contracts of various levels of granularity.

For bug detection, there also exists many conventional
techniques tailored for smart contracts, such as those based
on static analysis andmodel checking (e.g., SmartCheck [14],
Securify [13]), symbolic execution and dynamic analysis
(e.g., Oyente [12]), Manticore [55]), and a mix of techniques
(e.g., Mythril [16]). “Conventional” here refers to the fact that
they require human curated correctness and/or bug patterns
or specifications in order to check whether the code complies
with or violates the given patterns or specifications.

There are other bug detection techniques that do not
require predefined bug patterns or specifications; instead,
they often rely on statistically inconsistencies among multi-
ple instances of code. For example, Juergens et al. [56] report
that inconsistencies among similar code are an important
source of bugs in programs, and every second (possibly
inconsistent) modification of a piece of similar code increases
the chance of errors. This phenomenon has been explored in
the literature to detect clone-related bugs (e.g., [57], [58]),

code porting errors (e.g., [59]), semantic bugs (e.g., [60], [61],
[62]), etc.

Another category of bug detection techniques depending
on historical known bugs is more similar to our approach.
Those approaches learn patterns from known bugs using
various techniques (e.g., graph pattern matching [63] and
heuristic rule matching [57], [58]) and search for similar
instances in a given code base. Recently, such techniques
that require little or zero efforts in manually written specifi-
cations are often based on deep learning (e.g., [64], [65]).

Our approach is relying on the existence of known bugs,
as it automatically learns code and bug representations from
known bugs based on code embedding. It is unsupervised;
there is no need to handcraft features beforehand, which
saves much manual effort in feature selection needed for
many other techniques. Given a sufficiently comprehensive
set of code and known bugs, our approach can potentially be
applicable for both bug detection and contract code valida-
tion. On the downside, our “bug detection” and “contract
validation” are both evaluated with respect to the known bugs:
bug detection is to detect all instances of the known kinds of
bugs in a large contract corpus; contract validation is to check
if a contract is free of any instance of bugs similar to the
known bugs. If no enough known bugs are available, our
approach can utilize potential bugs reported by conventional
techniques too, providing a complementary way to make
bug detection and contract validationmore comprehensive.

3 APPROACH

Fig. 1 demonstrates the overall framework of SMARTEMBED.
Based on similarity checking and code embeddings, SMAR-

TEMBED is targeting three tasks: clone detection, bug detec-
tion, and contract validation. For clone detection and bug
detection, we aim to identify code clones and clone-related
bugs for smart contracts in the existing Ethereum block-
chain. For contract validation, given a new smart contract,
SMARTEMBED will help to validate whether it contains vulner-
able statements associated with our bug database.

To be more specific, the collected source code of smart
contracts are loaded and parsed by our custom built parser,
generating the abstract syntax trees (ASTs) for a smart con-
tract. Then, we extracted a stream of tokens by serializing

Fig. 1. Overview of our approach.
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the ASTs. Following that, the normalizer reassembles the
token stream to eliminate the differences (e.g., the stop
word, values of constants or literals) between smart con-
tracts. The result sequence that is output by the normalizer
is then fed into our code representation learning sub-model.
Through the model building and training, each code frag-
ment would be embedded by a fixed-length dimension vec-
tor. All of the source code will be encoded into the code
embedding matrix. In the meanwhile, all vulnerable source
code would be embedded into the bug embedding matrix.

Next, clone detection, bug detection and contract valida-
tion are performed using similarity checking methods via
vector space comparison. Similarity comparison is per-
formed between the possible code snippet pairs, and a simi-
larity threshold governs whether code fragments will be
considered as code clones or clone-related bugs.

In following sub-sections, we elaborate our data collec-
tion, parsing, normalization, embedding learning, and simi-
larity checking steps.

3.1 Data Collection

To prepare the smart contract code used for our approach
and evaluation, first we collected Solidity smart contracts
using EtherScan,3 which is a block explorer and analytics
platform for Ethereum. To be more specific, we built our
own web scrapers to systematically search and download
every HTML page on the entire site. After parsing HTML
output from that page, needed information (e.g., contract
address/source code/byte code/opcodes) were extracted
from the HTML file for our further assessment.

By April 20, 2018 when we started our evaluation experi-
ments, we had collected 22,725 verified smart contract. We
counted the number of individual contracts (given the
source code of a smart contract, there may include several
individual contracts), functions, statements, and lines asso-
ciated with these smart contracts. On average, each smart
contract involves around 6 individual contracts, 27 func-
tions, 85 statements, and 323 lines of code. Table 1 describes
the statistics of our collected dataset.

3.2 Parsing

The abstract syntax tree (AST) is a structural representation
of a program. In this step, for each smart contract, we used
a custom-built Solidity parser to parse the smart contract
into an AST. We built our code embeddings based on AST
because its tree structured nature provides opportunities to
capture structural information of programs.

More specifically, ANTLR and a custom Solidity grammar
were used to generate the XML parse tree as an intermediate

code representation. The source code was fully translated to
this internal tree representation. After that, we built the code
embeddings based on this abstract syntax tree. Listing 1 and
Fig. 2 provides a simple example of a smart contract and its
correspondingAST, defined in Solidity.

We serialized the parse tree of a smart contract differ-
ently for contract-level, function-level and statement-level
program elements, depending on the types of the tree nodes
that contain or are siblings of the relevant elements. The
high level idea of such a processing is to capture the struc-
tural information (e.g., branch and loop conditions) in and
around the focal elements. Further, non-trivial tokens and
identifier names are processed and put into the code ele-
ment sequences serialized from the trees, so that certain
data flow information (via defining/using a same name) is
added into the sequences too. We describe the details of the
tokenization process below with the aforementioned sample
Solidity code.

Listing 1. An Example of Solidity Program

1 pragma solidity ^0.4.15;

2
3 contract Overflow {

4 uint private r=0;

5
6 function addValue(uint value) returns (bool){

7 // possible overflow

8 r += value;

9 }

10 }

Contract Level Tokenization. We extracted all terminal
tokens from the XML parse tree by performing an in-order
traversal. Regarding the previous smart contract, the follow-
ing tokens were extracted (1_10 stands for the line range of
this contract).

1 1_10 : pragma solidity ^ versionliteral

; contract Overflow { uint private r = 0 ; function

addValue ( uint value ) returns ( bool )

{ r += value ; } }

Function Level Tokenization. Considering the function level
tokenization, we appended the contract signature to the end
of function tokens. For the previous smart contract, function
level tokenization’s result was given as follows (6_9 repre-
sents this function starts at line 6 and ends at line 9).

1 6_9 : function

addValue ( uint value ) returns ( bool ) { r +=

value ; } contract Overflow overflow { }

Statement Level Tokenization. Different from the contract-
level and function-level tokenization, for statement-level
tokenization, based on the terminal tokens, we added more
details of structural and semantic relations. For example,
regarding the previous smart contract, structural information
such as the chain of ancestors in ASTs as well as function sig-
natures were retrieved from the XML parse tree. By adding
the chain of ancestors in ASTs, our model can capture the
structural relationship; by adding the diverse neighbourhood

TABLE 1
Collected Data

# Contracts 22,725
# Individual Contracts 135,239
# Functions 631,261
# Statements 1,944,513
# Lines of Code 7,329,362

3. https://etherscan.io/
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nodes, our model can capture the “context” information of a
focal element.

1 8_8 : sourceUnit contractDefinition contractPart

functionDefinition block statement

simpleStatement r += value ; function addValue

add value ( uint value ) returns ( bool ) contract

Overflow overflow { }

Our parse tree based serialization of the code with respect
to a focal element captures most structural (containment and
neighbouring) and some semantic (data-flow) information,
which serves the downstream applications.

3.3 Normalization

An important task during preprocessing is normalization.
In this step, we normalized the token sequence to remove
some semantic-irrelevant information. To be more specific,
the following steps have been taken:

� Stop words : For single-character variables, such as
“i”, “j”, “a”, “b”, “k”, etc., we replaced them with
“SimpleVar”. The below code snippet illustrates this
step:

1 uint private r = 0 ;

2 == >
3 uint private SimpeVar = 0 ;

� Punctuations : Tokens having no effect on code oper-
ational semantics, non-essential punctuations such
as ‘, ’, “,”, “;” were removed. Some other punctua-
tions were reserved such as “{”, “}”, “[”, “]”. The fol-
lowing code snippet exemplified this operation:

1 uint private SimpeVar = 0 ;

2 == >
3 uint private SimpeVar = 0

� Constants : According to the type of constants, we
unified themwith “StringLiteral”, “DecimalNumber”,
“HexNumber” and “HexLiteral” respectively. The
below gives an example of how this step works:

1 uint private SimpeVar = 0

2 == >
3 uint private SimpeVar = decimalnumber

� Camel Case Identifiers : For identifiers following
camel casing, we kept it as a reserved token. Addi-
tionally, we split this identifier into its constituent
individual words. For example,

1 addValue

2 == >
3 addValue add value

The normalizer generated token stream of the 22,725 con-
tracts, 631,261 functions and 1,944,513 statements respec-
tively. After the normalization process, 1.2 GB of clean text
remained, amounting to 119,568 tokens. This comprised the
final training dataset that was fed into the training algorithm.

3.4 Code Embedding Learning

In this step, based on the previous normalization results, we
mapped each possible code fragment, such as statement,
function, and contract to a high dimensional vector respec-
tively. The following two embedding algorithms are applied:
Word2Vec [19] and FastText [18]. Word2Vec learns vector
representations of words that are useful for predicting the
surrounding words in a sentence. However, traditional
Word2Vec failed to capture the morphological structure of a
word. FastText attempts to solve this by treating each word
as the aggregation of its subwords, subwords are taken to be
the n-gram of the word, and the vector for a word with Fast-
Text is the sum of all n-gram vectors of its component.

To train the model, we used the open source Python
library gensim,4 which incorporates the Word2Vec and Fast-
Text training algorithm at the same time. We have to clarify
that we choose FastText as our primary embedding methods
for the later experiment because of the following reasons: 1)
According to our experimental result, FastText performs bet-
ter on syntactic tasks compared to the original Word2Vec.
The reason for this may be that FastText take into account
subword information, which captures more semantic and
syntactic information from the context 2) FastText can be
used to obtain vectors for out-of-vocabulary (OOV) words,
by summing up vectors for its component char-ngrams.
Since the number of unique tokens in the training dataset
was very limited, i.e., 119,568, OOV problems could be
encountered very often when dealing with a new smart con-
tract. The details of the code embedding learning process are
described as follows:

Fig. 2. Sample solidity parse tree.

4. https://radimrehurek.com/gensim/
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3.4.1 Token Embedding

The normalized token stream generated by the normalizer
was used as the training corpus. We then applied the embed-
ding algorithm to contract-level, function-level, and state-
ment-level training corpus respectively. After that, each token
within the training corpus was mapped to a real-valued vec-
tor of a fixed dimension. Since there are 308 node types in Sol-
idity’s grammar file, we set the word embedding size to half
of the number of node types, which is 150, for compressing
irrelevant or overlapping meanings of the node types when
SmartEmbed generates embeddings for the code.5 The token
embeddings process served as a “pretraining” stage for con-
structing higher-level code embeddings.

3.4.2 Higher Level Embedding

As long as we got basic vector representation for tokens, the
embeddings of higher level code fragments such as state-
ment-level, function-level, and contract-level were able to be
generated by the composition of the possible atomic tokens.
To capture the features of semantics as well as the size of the
code, we chose the summing metric to compose this shared
embeddings in our preliminary study. Specifically, the code
embeddings for a particular code fragment is summing up
all possible tokens’ embeddings within it. The more formal
definition for the code embedding is described as follows:

Definition. Given a solidity code snippet T , for each token w in
T , we define the code embedding for T as following:

EmbeddingðT Þ ¼
X

w2T
wvector: (1)

After defining the code embedding for a particular code frag-
ment, every possible smart contract, function, and statement
can be embedded to a fixed-length vector.

3.5 Embedding Matrix Building

By stacking every single vector together, we can easily
obtain 3 code embedding matrices Cc�d, Ff�d, Ss�d with
respect to contract-level, function-level, and statement-level
respectively.

Contract Embedding Matrix Cc�d. For contract-level code
embedding matrix, the first dimension c is the total number
of contracts, which was 22,725, the second dimension d is
the code embedding size we set previously, which was 150
in our case. In other words, contract embedding matrix C
would be a 22,725 � 150 matrix. We considered the ith ele-
ment Ci (i ¼ 1; 2; . . . ; c), which is a 150 dimensional vector,
as the code embedding for ith contract.

Function Embedding Matrix Ff�d. For function-level
embedding matrix, the first dimension f was 631,261, which
related to the total number of statements in our study. Hence
function embedding matrix F would be shape of 631,261 �
150, where each row Fiði ¼ 1; 2; 3; . . . ; f) represented the
code embedding for the ith function.

Statement Embedding Matrix Ss�d. For statement-level code
embedding matrix, same as contract-level and function-level,

the first dimension s corresponded to the total number of
statements, which was 1,944,513 in our study. The shape of
statement embedding matrix S would be 1,944,513 � 150,
each row of the matrix represented the code embedding for a
specific statement.

3.6 Similarity Checking

We define the similarity checking methods in this step,
which will be used in the following clone detection, clone-
related bug detection, and contract validation tasks.

Definition. Given two code fragments C1 and C2 , e1 and e2 are
their corresponding code embeddings, we define the semantic dis-
tance as well as similarity between the two code snippets as below

DistanceðC1; C2Þ ¼ Euclideanðe1; e2Þ
ke1k þ ke2k (2)

SimilarityðC1; C2Þ ¼ 1�DistanceðC1; C2Þ: (3)

Given any two code fragments Ci and Cj, if their similarity
score estimated above over a specific similarity threshold d, Ci

and Cj are viewed as a clone pair. This similarity checking
methods can be employed with vector space comparison and
thus benefit ultimate tasks.

3.7 Clone Detection, Bug Detection, and
Contract Validation

Based on the code embeddings we generated and the simi-
larity checking methods we proposed, we are able to apply
our approach to solve various tasks, i.e., clone detection, bug
detection, and contract validation. For clone detection, we
measure the similarity between two code fragments of smart
contracts, and identify them as clone if the similarity score is
above a pre-defined threshold. For bug detection, we search
code fragments in our code base that are “similar” to the
known bugs, then we identify the code snippets as buggy if
its similarity score is over a pre-defined threshold.Moreover,
for contract validation, when a developer complete a new
smart contract, we also measure the similarity between it
and the buggy statements we collected. If the similarity score
is above a pre-defined threshold, the vulnerable statements
can be identified in the new smart contract. Note that the
threshold used for each of these three tasks can be different
due to differences in the nature of these tasks.

4 EMPIRICAL EVALUATION

The main idea of our approach is based on code embedding
and similarity checking for various similarity-based soft-
ware engineering tasks. Herein, we evaluate how well our
approach embeds code and checks similarity for the pur-
poses of contract code clone detection, bug detection, and
contract validation.

4.1 Code Embedding Evaluation

As we have introduced in previous sections, representation
learning maps a symbol to a real-valued, distributed vector.
the basic criterion of code embedding is that similar symbols
should have similar representations. In particular, symbols
that are similar in some aspects should have similar values
in corresponding feature dimensions. To demonstrate the

5. Dimensions in the range of a few hundreds have been used in the
literature [17], [18], [19], [66] with reasonably good effectiveness. We
leave the sensitivity analysis of vector dimensions as future work.
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effectiveness of our code embedding, we pick top 100 fre-
quent tokens, then draw the embeddings for the tokens on a
2D plot using T-SNE algorithm, which are shown in Fig. 3.
Similar words that are close together in the vector space and
are expected to be close in the 2D plot as well.

From the figure, we note that tokens sharing similar syn-
tactic and lexical meaning are clustered together. For exam-
ple, operators such as “þ”, “�”, “�”, “=”, “>¼”, “<¼” are
grouped together, and tokens such as “args”, “dynargs”,
and “StringLiteral”, “decimals” are close to each other. This
gives us confidence that high dimensional code representa-
tion can meaningfully capture co-occurrence statistics and
distributed semantics for the tokens.

4.2 Similarity Checking Evaluation

To demonstrate the effectiveness of the similarity checking,
we evaluate our approach with respect to three tasks: code
clone detection, bug detection, and contract validation; and
we compare the results with the following tools designed
specifically for those tasks.

� Deckard [24]: a scalable, tree-based tool for source
code clone detection. It has been widely used and
extended to support the Solidity language, and we
can compare with it on smart contract code clone
detection.

� SmartCheck [14]: an extensive static analysis tool
that can detect many kinds of vulnerabilities in smart
contracts automatically. It works on Solidity source
code, and has been shown to outperform many other
tools in terms of bugs detected. Hence in our study,
we choose SmartCheck to compare the performance
of our approach in detecting bugs and validating
contracts.

In the following sections, we aim to answer the following
six key research questions:

� RQ-1: How effective is our SMARTEMBED for detecting
code clones within smart contracts?

� RQ-2: How effective is SMARTEMBED for bug detection
in smart contracts?

� RQ-3: How effective is SMARTEMBED for distinguish-
ing the bug fixes from the bugs?

� RQ-4: How effective is the structural and semantic
information added to SMARTEMBED?

� RQ-5: How effective is SMARTEMBED for smart con-
tract validation?

� RQ-6:How efficient is SMARTEMBED?

4.3 RQ-1: Clone Detection Evaluation

Code clones are common in software and can be considered
useful or harmful depending on different circumstances.
They can appear more frequently in smart contracts than tra-
ditional software as smart contracts are irreversible and often
intended to be self-contained, containing all the code imple-
menting needed functionalities with little reference to other
contracts. Maintaining smart contracts and managing dupli-
cations, redundancies, and inconsistencies are very important
for contract quality assurance, and the detection of contract
code clones is an important first step. The nature of the task is
similarity based and very suitable for our approach.

4.3.1 Experimental Setup

Code clone detection is done through the vector space com-
parison via similarity checking,which is described in Section 3.
A similarity threshold governs whether two code fragments
are viewed as clones. We evaluate the code clone detection at
the contract level, function level as well as the statement level
by using our approach.

� Contract-level clone detection: As mentioned in Sec-
tion 3, each smart contract can be represented by a
fixed dimensional vector. We construct a pairwise
similarity matrix Ms�s(in our case, M would be a
22718 � 22718 matrix, we removed 7 parsing error
cases here), where each row and column corresponds
to a smart contract, and each cell Mij corresponds to
the similarity score between smart contract si and sj.
Given a similarity threshold d, if Mij > dði 6¼ jÞ, the
corresponding smart contract si and sj would be con-
sidered as a clone pair.

� Function-level clone detection: Theoretically we
could also construct a pairwise similarity matrix the
same as the above, for all functions. However, due to
the large number of functions, which was 631,261, the
complexity of computing the pairwise similarity
between every pair of functions directly is too expen-
sive. Hence in this evaluation, we randomly sample
200 smart contracts from our repository and use the
functions in the 200 contracts, which contain 5,307
functions in total, as clone queries. Following that, a
pairwise similarity matrix Ns�t between the sampled
5,307 functions and all of the functions in the whole
contract set is generated (i.e., N was a 5307 � 631261
matrix), where each cellNij represented the similarity
score between the sampled function Ni and the func-
tionNj. Same as the above, the associated functions fi
and fj will be considered as a clone pair ifNij > d.

� Statement-level clone detection: Same with function-
level clone detection, since it is too expensive to cal-
culate the pairwise similarity between every pair of

Fig. 3. Result of code embeddings.
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statements directly, we extract all the statements
within the aforementioned 200 sampled contracts,
which contain 16,350 statements in total. Following
that, we construct a pairwise similarity matrix Qs�t

between the sampled 16,350 statements and all of the
statements in the whole contract set (i.e., N was a
16,350 � 1,944,513 matrix), where each cell Qij repre-
sents the similarity score between the sampled state-
ment Qi and the statement Qj. Same as the above,
the associated statements si and sj will be considered
as a clone pair if Qij > d.

4.3.2 Experimental Results

To justify our approach on the task of code clone detection,
we compare our results with those of Deckard (with its
default settings) by the numbers of lines of code that are
detected as clones. We set the similarity threshold to 1.0 and
0.95 for Deckard and SMARTEMBED respectively.6 The results
are summarized in Table 2. From the table, we can observe
the following points.

� There is a very high ratio of code clones among smart con-
tracts. By using Deckard with its default settings with
similarity threshold 1.0, the code clones may involve
more than 6.6million lines of code,while the total lines
in 22,725 contracts are just 7.3 million, which means
more than 90 percent smart contracts on Ethereum are
somehow cloned from others. The code clone ratio is
even higher (more than 96 percent) if we set the simi-
larity threshold to 0.95. Since SMARTEMBED can detect
code clones on contract-level, function-level and state-
ment-level, we exclude the clone fragments in Deck-
ard results that are smaller than a contract, function
and statement respectively for a fair comparison. The
clone ratios on both function-level and statement-level

are consistent with the original clone ratio. We note
that clone ratio drops at contract-level, this is because
we just keep the results if the whole contract is a clone,
removing all the non-whole contract clones.

� SMARTEMBED report less clones overall than Deckard on dif-
ferent levels of granularity and similarity thresholds.
Regarding the SMARTEMBED results, the clone ratio was
0.39 and 0.85 at the contract-level with respect to simi-
larity threshold 1.0 and 0.95 respectively. At the func-
tion-level, as mentioned in the previous subsection,
we randomly sample 200 contracts which include
5,307 functions, involving 27,945 lines of code int total.
SMARTEMBED detected 23,087 (85 percent) and 24,640
(91 percent) of them as clones with similarity thresh-
old 1.0 and 0.95 respectively. Consistent with the func-
tion-level clone results, the clone ratio was 0.82 and
0.93 at statement-level with respect to the similarity
threshold 1.0 and 0.95 respectively. We argue that the
main reason for this phenomenon is that SMARTEMBED

is more precise than Deckard in detecting clones, this is
because SMARTEMBED encodes both structural and
some contextual semantic information, while Deckard
only considers structural information. So, SMARTEMBED

should havemore constraints and detect less clones.
� Most code clones detected by SMARTEMBEDare also detected

by Deckard. To evaluate the quality of code clones
reported by our approach, we count the numbers of
lines of code in our results that overlap with clones
reported by Deckard (assuming Deckard’s results are
accurate), the results are summariized in Table 3 (for
both 1.0 and 0.95 similarity) and the Venn diagrams in
Figs. 4, 5 and 6 for the contract-level, function-level
and statement-level respectively. We note that the
overlap ratio ismore stable at function-level, reflecting
that SMARTEMBED is better in finding functional clones
while tolerating non-essential syntactic differences.

Regarding the relatively high clone ratio in smart con-
tracts, we consider that the following reasons can be respon-
sible for introducing clones:

� One of the main reasons for introducing clones in
smart contracts is the irreversibility of smart contracts
stored in the Ethereum blockchain. Even when the
same contract creatormaywant to evolve the contract
code and create new versions of the smart contracts,
the older versions are still kept visible in the block-
chain. We consider such a scenario, and recount all
the clones by creator addresses (i.e., if the detected
clones are code belonging to a same creator, we do
not report them), such clone results still report a con-
siderable high clone ratio 51 percent for similarity
threshold 0.95 on contract level, reflecting the fact
that cloning contracts across different creators is
more common than usual software.

� ERC20 is the main technical standards for the imple-
mentation of tokens. The standardization allows con-
tracts to operate on different tokens seamlessly, thus
boosting interoperability between smart contracts.
From the implementation perspective, ERC20 are
interfaces defining a set of functions and events,
such as totalSupply(), balanceOf(address owner), transfer

TABLE 2
Code Clone Quantity Summary

Methods
Granularity # Cloned # Total Clone

level lines lines ratio

Deckard(1.0)

Original 6,623,509 7,329,362 0.9039
Contract 4,337,582 7,329,362 0.5918
Function 24,504 27,045 0.9060
Statement 16,448 18,117 0.9079

SmartEmbed(1.0)
Contract 2,864,673 7,329,362 0.3908
Function 23,087 27,045 0.8537
Statement 14,774 18,117 0.815

Deckard(0.95)

Original 7,054,568 7,329,362 0.9625
Contract 5,337,860 7,329,362 0.7283
Function 26,232 27,045 0.9699
Statement 17,548 18,117 0.9685

SmartEmbed(0.95)
Contract 6,264,136 7,329,362 0.8547
Function 24,640 27,045 0.9110
Statement 16,760 18,117 0.925

6. The definitions of similarity used in SmartEmbed and Deckard
are not exactly the same: SmartEmbed is based on the embedding vec-
tors (cf. Section 3.6); Deckard [24] is based on tree structures. However,
we simply assume the two are approximate of each other and treat
them the same for easier comparison.
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(address to, uint value). For every contract in our data-
base, if the contract has implemented all the interfaces
required by ERC20, it will be considered as an ERC20
contract. Finally, we find that 15,514 out of 22,725
(68.3 percent) contracts contain the code blocks to
support compliance to the ERC20 standard, reflecting
that template contracts also plays an important role
to cloning in Ethereum.

The experimental results reveals homogeneous of the
Ethereum ecosystem. Our clone detection results can benefit
the smart contract community as well as individual Solidity
developers in the following ways:

� The relatively high ratio of code clones in smart con-
tracts may cause severe threats, such as security
attacks, resource wastage, etc. Finding such clones
can enable significant applications such as vulnera-
bility discovery (clone-related bugs) and deployment
optimization (reduce contract size and duplication),
hence contribute to the overall health of the Ether-
eum ecosystem.

� Our work in identifying clones can also help Solidity
developers to check for plagiarism in smart contracts,
which may cause a huge financial loss to the original
contract creator.

4.3.3 Examples of Clone Detection

To compare the results of SMARTEMBED and Deckard, we
have manually checked the clones detected by SMARTEMBED

but not by Deckard. A sample code pair is shown in Figs. 7
and 8. The code pair has similar statements but some state-
ments are added and modified, which can be considered
as a type-III or even type-IV semantic clones [67] and are
hard for Deckard to detect as it was designed for syntactic
clones.

We also manually checked the code clone pairs detected
by Deckard but not by SMARTEMBED. A sample code pair is
shown in Figs. 9 and 10. Even though these two pieces of
code are both functions about “addCompany”, since they
use different data structures, they are not considered as syn-
tactic clones. This is because Deckard ignores the different
identifier names in the code, which results in detecting this
clone by accident. Regarding SMARTEMBED, it maintains these
differences in identifier names, which increases the differen-
ces between associated code embedding vectors. This further
justifies that SMARTEMBED is more precise in clone detection
thanDeckard.

Answer to RQ-1: How effective is our SMARTEMBED for detect-
ing code clones within smart contracts? - we conclude that
SMARTEMBED is highly effective.

TABLE 3
Code Clone Quality and Overlapping Summary

Granularity Similarity Threshold Reported by Deckard only Reported by both Reported by SmartEmbed only Overlap ratio

Contract Level 1.0 1,499,308 2,838,274 26,399 0.65
0.95 97,140 5,240,720 1,023,416 0.82

Function Level
1.0 1,689 22,815 272 0.92
0.95 1,664 24,568 72 0.93

Statement Level 1.0 1,933 14,515 259 0.87
0.95 945 16,603 157 0.93

Fig. 4. Venn graph for contract-level clones detected by SMARTEMBED and
deckard with similarity threshold 1.0 (left) and 0.95 (right).

Fig. 5. Venn graph for function-level clones detected by SMARTEMBED and
deckard with similarity threshold 1.0 (left) and 0.95 (right).

Fig. 6. Venn graph for statement-level clones detected by SMARTEMBED

and deckard with similarity threshold 1.0 (left) and 0.95 (right).

Fig. 7. Example pairs of SmartEmbed.
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4.4 RQ-2: Bug Detection Evaluation

To quickly duplicate some functionality, programmers usu-
ally copy and paste code, which can introduce clone-related
bugs into programs. It is also folklore that programmers
often repeat similar bugs. Such intuitions give the basis for
similarity-based bug detection using our approach. To pin-
point a bug accurately, we perform bug detection at the state-
ment level of granularity. That is, for a given known buggy
statement (simply called a bug), every statement in our code
base whose similarity with respect to the bug exceeds a spe-
cific threshold is reported as a potential bug. As shown in the
evaluation results later, compared with other analysis-based
approach, our similarity-based approach can detect bugs
similar to known ones across a large set of programs more
efficiently and accurately, while analysis-based approach
may detect more bugs in individual programs.

4.4.1 Experimental Setup

To detect bugs, we need to collect some known buggy state-
ments to construct the bug database. Although there are
many contracts in the wild reported to be vulnerable (e.g.,
[3], [4]), there is a lack of a comprehensive list of references to
pinpoint buggy statements in those contracts. We collected a
list of 52 known buggy smart contracts belonging to 10 kinds
of common vulnerabilities. These vulnerabilities are from
real world events (e.g., Reentracy, Honeypot, Replay, Gas
Limit) [3], [4], [68], previous research papers (e.g., Over-
flow/Underflow, Blockhash/Timestamp) [6], [7], [12] and/
or the CVE reported by some organizations (e.g., Transfer
Flaw, Batch Overflow, Verify Reverse) [69], [70], [71].

We then tried our best to pinpoint buggy statements in
those contracts by inspecting research papers, web articles,
and community discussions. A list of vulnerable smart con-
tracts and their vulnerabilities are summarized in Table 4.

For each vulnerable smart contract in the table, one or more
associated buggy lines are identified. We divide the 52 vul-
nerable smart contracts into two groups: 32 smart contracts

Fig. 8. Example pairs of SmartEmbed.

Fig. 9. Example pairs of deckard.

Fig. 10. Example pairs of deckard.

TABLE 4
Vulnerable Smart Contracts

Vulnerability Smart contract name Line num

Overflow/Underflow

*SMT 206
*EthConnectPonzi 201
*BecToken 257
MESH 209
ethpyramid 217

Blockhash/Timestamp

*SmartBillisons 554
*Ethraffle 94
*LuckyDoubler 118
KeberuntunganAcak 124
Ethraffle_v4b 92

Implicit Visibility/HoneyPot

*Multiplicator 22
*PrivateBank 35
*KingOfTheHill 12
ETH_VAULT 38
Simpson 25
RichestTakeAll 15

Overpowered User/Owner CVE

*EthLendToken 236
*BitCoinRed 42
*Rubixi 18
NetkingToken 184
ZupplyToken 241
Toorr 42

Reentrancy
*DAO 1,013
MICRODAO 1,001

Gas Consumption/Gas Limit

*Simoleon 61
*Penis 63
*FreeCoin 59
Polyion 102
Pandemica 50

Incorrect Signature/Replay

*MTC 211
*CNYToken 213
*GGoken 144
UGToken 140
CNYTokenPlus 180

TransferFlaw/ERC-20 Transfer

*UselessEthereumToken 65
*PhilcoinToken 83
*CosmosToken 58
*XmanToken 61
TacoToken 120
WinlastmileToken 104

Overflow/Batch Overflow

*TUPC 261
*WMCToken 193
*InsightChainToken 288
*NemoXXToken 259
FishOne 360
UpcToken 261

Unsafe Reverse/Verify Reverse

*CockMight 61
*Collegecoin 53
*SynthornToken 58
*VilijavisShares 107
Frikandel 71
Virgo_ZodiacToken 99
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marked with * are used for the bug detection evaluation, the
other 20 are saved for the contract validation evaluation later.
For the bug detection evaluation, 63 buggy statements are
collected from the 32 vulnerable contracts.We create our bug
database from the 63 buggy statements by using code
embedding described in Section 3. That is, for each buggy
statement, we compose a numerical vector by summing up
the vectors for all relevant tokens in the statement. Each
statement is thus mapped to a vector of 150 dimensions.
Since we have 63 buggy statements, a bug embeddingmatrix
V63�150 is constructed and serves as our bug database.

The setting for bug detection herein is that, for each
buggy statement embedding Vi 2 V in our bug database
(simply called a bug), we need to identify every possible
statement Sj 2 S that is in the set of all statements in the
contracts we collect from the Ethereum blockchain and sim-
ilar to the given bug. Given a similarity threshold d, if the
similarity score estimated between Sj and Vi is over d, then
Sj will be reported as a potential bug similar to Vi. We per-
form such bug detection to report bug candidates for every
bug in our bug database. Following that, we validate each
candidate bug to see whether it involves an actual bug or
not by manually checking. To be more specific, we compare
bug candidate lines reported by our approach with the real
bug lines, the candidate bugs will be validated if one of the
following conditions was satisfied:

� The bug statements contain the exact identical code
fragments same as the real bugs, which can be con-
sidered as type-I clone-related bugs.

� The bug candidates involve syntactically equivalent
fragments as real bugs, with some variations in iden-
tifiers, literals or types, which can be viewed as type-
II clone-related bugs. A sample pair is shown in
Figs. 11 and 12.

� The candidate bug lines involve syntactically simi-
lar code with inserted, deleted or updated state-
ments, which can be considered as type-III or type-IV

clone-related bugs. A sample pair is shown in Figs. 13
and 14.

If the bug candidate is an actual clone-related bug, then it
is counted as validated in Tables 5 and 6. To demonstrate the
advantages of SMARTEMBED in clone-related bug detection,
we also compare it with the detection results of SmartCheck.

4.4.2 Experimental Results

For different types of clones, the bug detection results of
SMARTEMBED are summarized in Table 5. By setting the simi-
larity threshold to 0.90, we count the number of reported
bugs as well as validated bugs with respect to each clone
type (i.e., type-I, type-II, type-III/type-IV). If the bug candi-
date does not belong to any of these clone types, it is identi-
fied as Not-Clones. From the table, we can observe the
following points.

� Most of the bug candidates reported by SMAR-

TEMBED are Type-II clones. This reflects that solid-
ity developers do introduce the clone-related bugs
by copying and pasting source code from some-
where else.

� SMARTEMBED can achieve 100 percent precision for
detecting Type-I and Type-II clone-related bugs. This
is because Type-I and Type-II clones do not involve
structural changes and can be easily identified.

Fig. 11. Real bug:EthLendToken@236.

Fig. 12. Candidate bug:UHubToken@231.

Fig. 13. Real bug:PrivateBank@29-37.

Fig. 14. Candidate bug:ETH_FUND@35-42.

TABLE 5
Bug Detection Precision Summary for Various Clone

Types for Similarity Threshold 0.90

Clone Type # bugs reported # bugs validated precision ratio

Type-I 116 116 100% 8.8%
Type-II 989 989 100% 75.4%
Type-III/IV 69 58 84.1% 5.3%
Not-Clones 137 0 0% 10.5%
Total 1,311 1,163 88.7% 100%

TABLE 6
Bug Detection Precision Summary for Various

Clone Similarity Thresholds

Threshold # bugs reported # bugs validated precision

1.0 116 116 100%
0.99 156 156 100%
0.98 248 248 100%
0.97 322 322 100%
0.96 437 437 100%
0.95 582 572 98.3%
0.94 736 723 98.2%
0.93 875 858 98.0%
0.92 1,014 983 96.9%
0.91 1,107 1,052 95.0%
0.90 1,311 1,163 88.7%
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� The performance of SMARTEMBED drops for detecting
the Type-III/IV clones. To identify the Type-III/IV
clone-related bugs, we need to decrease the similar-
ity threshold, which may also introduce more false
positive cases at the same time.

The bug detection results of SMARTEMBED with respect
to different similarity threshold are summarized in
Table 6. For each specific similarity threshold d in the
table, we show the number of reported bug candidates
(i.e., the number of statements in our set of contracts that
have a similarity higher than d to some bug in our bug
database), and the number of bugs validated by manual
checking together with the precision. From Table 6, we
can see that:

� The precision of SMARTEMBED increases as the similar-
ity threshold increases. For thresholds higher than
0.96, SMARTEMBED can have a 100 percent precision.

� The lower the d is, the more statements may be
reported as potential bugs. When the similarity
threshold is set to 0.91, SMARTEMBED reports 1,052 state-
ments as potential bugs, whilemaintaining a high pre-
cision of 95 percent.

� When the similarity threshold is set to 0.90, SMAR-

TEMBED reports 1,311 potential bugs, 1,163 of them are
validated as real bugs. The precision of SMARTEMBED

drops to 88.7 percent. This is reasonable because
smaller similarity threshold will bring in more noises
and hence incur more challenges for detecting clone
related bugs. It also signals that setting the similarity
threshold between 0.90 and 0.91may be a good choice
for the bug detection task.

Since it is too expensive to run SmartCheck on all the 20k
+ contracts, we only run it on the manually validated con-
tracts associated with the 1,163 statements. SmartCheck
automatically checks a given contract for predefined vulner-
ability patterns and highlights the lines of code containing
the vulnerabilities. For a fair comparison, we limit SmartCh-
eck to the bug patterns we collected in Table 4. SmartCheck
only reported 697 out of 1163 statements as bugs, which
shows the advantage of our approach in detecting clone-
related bugs.

4.4.3 Examples of Bug Detection

We manually checked some bugs reported by SMARTEMBED

but not by SmartCheck. Some types of bugs, such as
“Honeypots” in Table 4 can not be effectively checked by
SmartCheck.

For example, the function multiplicate() above is
the only function that does allow a call from anyone other
than the owner. It looks like by sending a value higher
than the current balance of the contract it is possible to with-
draw the full balance from the contract. Both statements in
line 7 and 9 try to reinforce the idea that this.balance is
somehow credited after the function is finished. However,
this is a trap since the this.balance is automatically
updated before the multiplicate() function is called. So
if(msg.value > =this.balance) is never true unless
this.balance is initially zero.

Encoding such a bug type into tools like SmartCheck
would require extra efforts in defining the bug specification,

while our approach can just take the sample bug and auto-
matically generate embeddings to recognize similar bugs.
Of course, this advantage of our approach relies on good
embeddding of all relevant structural and semantic infor-
mation of code, which will be a continuing research direc-
tion in the future.

Listing 2.MultiplicatorX3 Example

1 contract MultiplicatorX3 {

2 ...

3 function multiplicate(address adr)

4 public

5 payable

6 {

7 if(msg.value > =this.balance)

8 {

9 adr.transfer(this.balance+msg.value);

10 }

11 }

12 }

Answer to RQ-2: How effective is SMARTEMBED for bug detec-
tion in smart contracts? - we conclude that SMARTEMBED is
very effective for clone-related bug detection in a large set
of smart contracts.

4.5 RQ-3: Practical Analysis

Considering the cloning rate in Ethereum is remarkably
higher than the traditional software, a key problem with
code cloning is that the original piece of code should ideally
be fixed in every copy of its later versions. Herein we per-
form a practical analysis to verify whether SMARTEMBED can
distinguish bug fixes from the original buggy statement.

4.5.1 Experimental Setup

Because the code file of deployed contracts is immutable,
hence when a bug is identified in a smart contract, the
developer should deploy a fixed version to the Ethereum
blockchain. For each buggy smart contract in our bug data-
base, we manually investigated the contract creation history
of the contract creator to see if there is a fixed version con-
tract for the specific buggy statement. Finally we found that
5 out of 52 buggy smart contracts include a fixed version.
We pinpointed the fixed statement and estimated the simi-
larity score between the buggy statement and its corre-
sponding fixed statement.

4.5.2 Experimental Results

The practical analysis results of SMARTEMBED are summa-
rized in Table 7. A similarity score is calculated between the

TABLE 7
Practical Analysis

Contract Name Similarity (fixed) Report Bug (0.90)

BitcoinRed 0.798 False
CockMight 0.883 False
FishOne 0.733 False
WMCToken 0.726 False
XmanToken 0.668 False
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buggy statement and its corresponding fixed statement.
From the table, we can see that:

� By setting the similarity threshold to 0.90, all the fixed
smart contracts can be correctly identified by SMAR-

TEMBED as not vulnerable. Even though the original
version and fixed version are very similar, SMAR-

TEMBED can effectively identify the real clone-related
bugs and neglect those fixed ones. This is because
SMARTEMBED focuses on statement-level for bug detec-
tion, any small fixes within the buggy statement will
result in different code embedding vectors, which
will also reduce the similarity scores.

� There is a significant drop of similarity scores between
the fixed version contracts and the original ones. This
further justifies the ability of SMARTEMBED to separate
the real buggy statement and fixed statement.

4.5.3 Bug and Bug Fix Examples for Practical Analysis

We show a pair of original buggy statement and its corre-
sponding fixed statement in Figs. 15 and 16. As illustrated
in Fig. 15, the function batchTransfer() makes multiple trans-
actions simultaneously. By passing several transferring
addresses and amounts by the caller, the function would
conduct some checks then transfer tokens by modifying bal-
ances. However, overflow might occur in line 193, uint256
amount = uint256(cnt) * _value, if _value is a huge number. It
will make amount become a small value rather than cnt
times of _value, then transfers out tokens exceeding balances
[msg.sender]. For the fixed version of batchTransfer() function
in Fig. 16, the buggy statement is updated to uint256 amount
= _value. mul(uint256(cnt)), herein, the contract creator com-
pute the multiplication by using secure mathematical opera-
tions such SafeMath. The change in the buggy statement as
well as the function signatures reduce the similarity score
between the buggy statement and the fixed statement.

Answer to RQ-3: How effective is SMARTEMBED for distin-
guishing the bug fixes from the bugs? - we conclude that SMAR-

TEMBED is very effective for distinguishing the bug fixes
from the clone-related bugs.

4.6 RQ-4: Ablation Analysis

When we perform the bug detection, one main novelty of
SMARTEMBED is adding details of structural (containment
and neighbouring) and semantic (data-flow) information
based on our serialization of parse trees. For example, we
added the chain of ancestors in ASTs to capture sequence
derivations and function signatures to capture the diverse

neighbourhood relations of nodes. As shown in Section 4.4,
this tree-based embedding technique is quite accurate and
effective for bug detection in a large set of smart contracts.
To verify the effectiveness of the structural and semantic
information added to SMARTEMBED, we perform an ablation
analysis with respect to the bug detection task.

4.6.1 Experimental Setup

For the ablation analysis, we compare SMARTEMBED with one
of its incomplete variants, named BASICEMBED. Different from
SMARTEMBED, BASICEMBED removes all the structural and
semantic relations from the statement tokenization results,
and only keeps the simple statement token sequence. By
going through the same steps of normalization, code embed-
ding learning and embedding matrix building process, we
can construct a new code embedding model for BASICEMBED.
Following that, for each bug statement in Table 4, we apply
BASICEMBED to the bug detection task via similarity checking.

4.6.2 Experimental Results

The bug detection results of BASICEMBED and SMARTEMBED are
summarized in Table 8. Due to the very large number of
bugs reported by BASICEMBED, which is more than 30k+,
manually validating all these potential bugs is too expen-
sive. Herein this evaluation, we randomly sampled 300 con-
tracts and validated these contracts manually. From the
table, we have the following observations.

� The total number of bugs reported by BASICEMBED

is very large, which is over 30k. At the same time,
the overall precision of BASICEMBED is only around
5 percent, which means the majority of the bugs
reported by BASICEMBED are false positives. This also
reflects that by simply extracting the token sequence
of the statement is not accurate enough for the bug
detection task.

� Regarding the precision of different similarity thresh-
olds, SMARTEMBED stably and substantially outper-
forms BASICEMBED, which reflects that the structural
and semantic information have a major influence on
the overall performance. This verifies the effective-
ness and necessity of adding structural and context
information based on parse trees.

� 87 percent of the bugs reported by BASICEMBED have a
similarity threshold of 1.0, which means most of the
bugs reported by BASICEMBED are type-I clone-related
bugs. This is because without considering the context
of the statement, code clones with respect to a single
buggy statement can be easily identified in other

Fig. 15. Original version of WMCToken@193.

Fig. 16. Fixed version of WMCToken@283.
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smart contracts. It further supports our claims that
the structural and semantic relations convey much
valuable information.

4.6.3 Bug Detection Example for the Ablation Analysis

We manually checked some buggy statements that have a
large number of clones reported by BASICEMBED. For exam-
ple, BASICEMBED reported 10,679 potential bugs with respect
to the following buggy smart contract.

Listing 3. Rubixi Example

1 contract Rubixi {

2 ...

3 address private owner;

4 function DynamicPyramid() {

5 owner = msg.sender;

6 }

7 function collectAllFees() {

8 owner.send(collectedFees);

9 }

10 ...

11 }

The function above name DynamicPyramid should be
Rubixi. The wrong name gives permissions to anyone to
invoke the DynamicPyramid function to become the
owner of the contract and withdraw fees from it. If the func-
tion had the same name as the contract Rubixi, then the
Ethereum virtual machine would automatically block access
from anyone except the contract creator. This bug happened
at some point of time during the development of the con-
tract: the contract name was changed from DynamicPyra-
mid into Rubixi, but the programmers forgot to change the
name of the constructor accordingly.

The buggy statement of this smart contract is pinpointed at
line 5, which is owner = msg.sender. However, without consid-
ering context information, this simple statement can be easily
identified inmany other smart contracts with the exact identi-
cal code tokens, andmost of these reported bugs are false pos-
itive cases. This is the reason for the extremely large number
of bugs and very lowprecision by using BASICEMBED. For using
SMARTEMBED, we can encode the context of a statement, such as
the function signatures function DynamicPyramid and contract
ancestor node Rubixi into the code embedding vector, which

can effectively reduce the false positive rate and identify the
real bugs in other smart contracts.

Answer to RQ-4: How effective is the structural and semantic
information added to SMARTEMBED? - we conclude that the
structural and semantic information added to SMARTEMBED

do have significant benefits for its overall performance.

4.7 RQ-5: Contract Validation Evaluation

Because a smart contract is immutable once it is deployed
onto the blockchain, it would be better to ensure its correct-
ness in its pre-deployment phase. The objective of the experi-
ment here is to test the capability of SMARTEMBED in catching
all bugs in a smart contract that are similar to known bugs, so
as to help validate the correctness of the contract. Although
not a formal verification tool, our approach can grow its
capability in validating a smart contract, as it is easily exten-
sible to incorporate new known bugs into our bug database
to checkwhether a smart contract contains similar bugs.

4.7.1 Experimental Setup

To help validate a given contract, for each statement s in the
contract, we generate a 150 dimensional vector for s based
on our model and query it against all the bugs in our bug
database V63�150. If the similarity between s and any bug in
our bug database exceeds a threshold d (d is set to 0.95, 0.90
& 0.85 for this task), s can be reported as a potential bug.

To assess the effectiveness of our approach, we took the
20 smart contracts without * in Table 4 for test. Also, a list
of “bug-free” smart contracts can help to assess false posi-
tive and false negative rates. Therefore, we collected 20
audited smart contracts from Zeppelin, one of the most
popular security audit firms. Each vulnerability discov-
ered on them is automatically considered as a false posi-
tive. There are a total of 2,857 statements associated with
these 40 smart contracts (20 buggy and 20 bug-free); 45
statements from the 20 buggy contracts are labelled as
bugs. We performed bug detection on these smart con-
tracts by using both our SMARTEMBED approach (SE) and
SmartCheck (SC). The confusion matrix with respect to the
bug reports generated by SE with three different similarity
thresholds (0.95, 0.90 and 0.85) and SC are summarized in
Table 9. We also calculated the Precision, Recall, F1 score,
false positive rate (FPR), and false negative rate (FNR)

TABLE 8
Ablation Analysis

threshold
SmartEmbed BasicEmbed

# bugs reported # bugs validated precision # bugs reported # bugs validated (sampled) precision

1.0 116 116 100% 32,264 13 / 246 5.3%
0.99 156 156 100% 32,264 13 / 246 5.3%
0.98 248 248 100% 32,265 13 / 246 5.3%
0.97 322 322 100% 32,268 13 / 246 5.3%
0.96 437 437 100% 32,296 13 / 246 5.3%
0.95 582 572 98.3% 32,322 13 / 246 5.3%
0.94 736 723 98.2% 32,408 13 / 247 5.3%
0.93 875 858 98.0% 33,708 13 / 259 5.0%
0.92 1,014 983 96.9% 34,073 13 / 263 4.9%
0.91 1,107 1,052 95.0% 37,061 14 / 291 4.8%
0.90 1,311 1,163 88.7% 37,601 15 / 300 5%
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based on the confusion matrix and show the metrics in
Table 10.

4.7.2 Experimental Results

From Tables 9 and 10, it can be seen that:

� The majority of the bugs can be checked with our
approach, and our approach can identify clone-
related bugsmore accurately than SmartCheck,which
is consistentwith bug detection evaluation results.

� By using our approach with the similarity threshold
0.90, the number of false positives was 8 and it
decreased to 0 with the similarity threshold 0.95.
SmartCheck reported far more false positives than
ours. Since SmartCheck can check more kinds of bug
patterns, it is worth noting that, for a fairer compari-
son, we only enabled the bug types listed in Table 4
for SmartCheck. When other types of vulnerabilities
were disabled, SmartCheck still had a 9.9 percent
false positive rate; its FPR would be overwhelmingly
higher if all bug types were enabled.

� The number of clone-related bugs discovered by our
approach increased from 27 to 36 with decreasing
similarity thresholds from 0.95 to 0.90. A potential
explanation is related to a common practice by devel-
opers who may do code cloning but make changes to
the clones for various reasons. Such a practice may
cause some cloned code to become dissimilar to each
other, which would need lower thresholds to detect
them.

� The false negatives decreased to 0 when we set the
similarity threshold to 0.85, which means all the
bugs can be identified by our approach using this
threshold. At the same time, the false positives
reported by our approach increased to 116, but still
far less than the results generated by SmartCheck.
Looking at the F1 score of this similarity threshold,
our approach is still much better than SmartCheck.

Answer to RQ-5: How effective is SMARTEMBED for smart con-
tract validation? - our results show that SMARTEMBED is effec-
tive in capturing bugs similar to known ones with low false
positive rates. Our future work will also continue to enrich
the bug database with more real bugs and improve the
embeddings.

4.8 RQ-6: Time Cost Analysis

The time cost of SMARTEMBED is mostly for the training of
code embeddings and the vector similarity checking, and is
dependent on the sizes of contract codebase and bug data-
base. To analyze the complexity of our proposed approach,
we need to measure the time complexity in the computation
of similarity as defined in Eqns. (2) and (3). For our machine
containing an Intel Xeon CPU E5-2640 v4 @ 2.40 GHz, the

training of code embedding took about a day for our data-
set. The average time for a pairwise similarity calculation
between two code snippets, as defined in Equations (2) and
(3) (Section 3.6) is around 250 ns. We estimated the time by
applying Deckard, SMARTEMBED and SmartCheck service
tool for clone detection, bug detection and contract valida-
tion tasks respectively. We use the same server described
above for testing, it took on average 79.2 ms and 416.3 ms
to check a single smart contract by using Deckard and
SmartCheck respectively. Regarding SMARTEMBED, for clone
detection, computing the pairwise similarity matrix M (M
was a 22718 � 22718 matrix) took on average 6.05s, checking
each smart contract only cost 0.26 ms. For bug detection, all
statements in our contract codebase are queried against
our bug embedding matrix, computing the similarity matrix
N (N was a 1944513 � 63 matrix) took on average 53.22s,
checking each smart contract cost 2.3 ms. For contract vali-
dation, a given contract is queried against our bug embed-
ding matrix, which took on average 4.7 ms.

Answer to RQ-6: How efficient is SMARTEMBED? - The query
for a clone or a bug using SMARTEMBED is efficient for practi-
cal uses.

5 DISCUSSION

We selected several smart contract projects from Github,
then contacted the Solidity developers by sending clone
reports and bug reports generated by SMARTEMBED for these
projects. For clone detection, we reported the most similar
smart contracts’ url on Etherscan associated with its similar-
ity score. For bug detection, we reported the exact bug line
and associated bug type. Some developers expressed inter-
est in using our tool.

1) Clone Detection - Compared to Etherscan’s “find simi-
lar contract” function, which can only find “Exact
Match” contracts, our tool is more flexible which can
report code clone on contract level, function level or
even statement level governed by a similarity thresh-
old. One practitioner responded, “If the tool works with
individual functions then that might be useful. I would
give you a shout out on Twitter”. Another developer
commented, “The clone detection isn’t useful to me, but I
could believe it would be useful to authors of widely cloned
contracts, such as cryptokitties or FOMO3D.”

2) BugDetection -With the help of our techniques, devel-
opers could quickly check for vulnerabilities and
improve confidence in the reliability of a contract. “It
is nice to have such a tool to identify vulnerable bugs in
smart contract, I probably will give it a try”. However,
there are also some developers who mentioned that

TABLE 10
Contract Validation Summary

SE(0.95) SE(0.90) SE(0.85) SC

Precision 100% 81.8% 28.1% 8.3%
Recall 60% 80.0% 100% 55.6%
F1 75% 80.9% 43.7% 14.4%
FPR 0.0% 0.3% 4.1% 9.9%
FNR 40% 20% 0% 44.4%

TABLE 9
Confusion Matrix Summary

SE(0.95)/SE(0.90)/SE(0.85)/SC True Bugs True Non-Bugs

Predicted Bugs 27 / 36 / 45 / 25 0 / 8 / 116 / 278
Predicted Non-Bugs 18 / 9 / 0 / 20 2812 / 2804 / 2696 / 2534
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the bug report is not useful, “one intractable problem I
found was that in smart contracts, everything is danger-
ous, and you can’t judge whether a contract is secure with-
out understanding intent - any insecure pattern can be
correct in the context of a contract designed to do that. ”

According to developers’ comments, we have imple-
mented SMARTEMBED

7 as a standalone web application tool
[72]. Solidity developers can copy and paste their contract
source code to the web application to find repetitive con-
tract code and clone-related bugs in the given contract. The
source code of SmartEmbed and contract data used in our
experiments can be found in our Github repository.8

Some developers also suggested publishing the tool as an
extension and enhancement to Etherscan so that developers
who have already been familiar with Etherscan can easily
utilize the tool, which can facilitate broader adoption of the
tool and easier collections of new bugs. Since a lot of Solidity
developers use the web IDE Remix to develop, deploy, and
test a smart contract, developers also suggested integrating
the tool as a plugin into an IDE (e.g., Remix andVisual Studio
Code) to help detect clones and bugs early in development.
The efficiency of SmartEmbed’s similarity checking step
(excluding the embedding steps), as shown in Section 4.8,
can be sufficient in supporting the uses in IDE in real-time
when developers are writing their code. We will follow such
suggestions to improve the tool in the near future.

6 THREATS TO VALIDITY

Internal Validity. Code representations used for code embed-
ding have significant effects on the embedding outcome and
the downstream applications. The ways we calculated the
code embedding for each code snippet is intuitive, which
may bias our approach for detecting clones of different code
sizes. There are a lof of related work have explored different
ways to represent code and embed more semantic informa-
tion into the code vectors, such as paths in control flow
graphs [73], paths in ASTs [74], dynamic execution traces
[75], API sequences and usage contexts [76], and many
others. We will try to employ different code embedding
techniques for the same tasks in the future.

Data Validity.We collected 22,725 solidity smart contracts
with source code through Etherscan for our experiment. It is
not complete as the number of smart contracts on Ethereum
grows faster recently and the number of contracts on Ether-
scan is almost doubled, over 40,000 already, not to mention
many other contracts that do not provide source code. In
the future, we can retrain our model and gain a better code
representation model with the enlarged Solidity source
code data set, and may even extend the embedding techni-
ques to Solidity bytecode. In addition, due to the lack of a
comprehensive list of Ethereum contract vulnerabilities, the
number of buggy contracts we collected is relatively small.
Our bug database currently contains 52 buggy contracts
covering 10 different bug types that are more relevant for
Solidity smart contracts, ignoring bug types that may be
common for other programming languages. The selected
contracts may not be sufficiently diverse or representative

of all contracts, and there can be a lot of false negatives if
applying our approach to detect bug types not included in
our bug database. We will keep expanding both our code
base and bug database in the near future.

External Validity. We validated the clone-related bugs
detected by SMARTEMBED only from the SmartCheck bench-
mark. One of the threat is that SmartCheck can also have
the false negative as well as false positive cases, hence the
results may be biased and incomprehensive. There cur-
rently exists other security analysis tools to find bugs in
smart contract, such as Oyente [12], Mythril [16], Gasper [9]
and Securify [13]. We plan to do more large-scale evalua-
tions with these tools in the near future. We also acknowl-
edge that the sample size of the user study is not sufficient,
we plan to get more feedback about our tool from practi-
tioners in the future.

7 SUMMARY

We have proposed a new approach, SMARTEMBED, based on
structural code embedding and similarity checking for clone
detection, bug detection and contract validation tasks on
smart contracts. We have evaluated our approach with more
than 22,000 Solidity smart contracts from the Ethereum
blockchain. For clone detection, SMARTEMBED can effectively
identify many instances of repetitive solidity code where the
clone ratio is around 90 percent, and more semantic clones
can be detected accurately by our tool than Deckard. For bug
detection, SMARTEMBED can identify more than 1,000 clone-
related bugs based on our bug databases efficiently and accu-
rately, which can enable efficient checking of smart contracts
with changing code and bug patterns. Such capabilities of
SMARTEMBED can be useful for facilitating contract validation
in practice.
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