Are Human Rules Necessary? Generating Reusable APIs with
CoT Reasoning and In-Context Learning

YUBO MAI, Zhejiang University, China

ZHIPENG GAO?, Shanghai Institute for Advanced Study of Zhejiang University, China
XING HU, Zhejiang University, China

LINGFENG BAO, Zhejiang University, China

YU LIU, Zhejiang University, China

JIANLING SUN, Zhejiang University, China

Nowadays, more and more developers resort to Stack Overflow for solutions (e.g., code snippets) when they
encounter technical problems. Although domain experts provide huge amounts of valuable solutions in Stack
Overflow, these code snippets are often difficult to reuse directly. Developers have to digest the information
within relevant posts and make necessary modifications, and the whole solution-seeking process can be
time-consuming and tedious. To facilitate the reuse of Stack Overflow code snippets, Terragni et al. first
explored transforming a code snippet in Stack Overflow into a well-formed method API (Application Program
Interface) by using a rule-based approach, named APIzator. The reported performance of their approach is
promising, however, after our in-depth analysis of their experiment results, we find that (1) 92.5% of APIs
generated by APIzator are pointless and thus are difficult to use in practice. This is because the method name
generated by APIzator (extracting verb + object) can rarely represent the method’s functionality, which can
hardly be claimed as meaningful/reusable APIs. (2) The authors manually summarized a number of rules to
identify parameter variables and return statements for Java methods. These hand-crafted rules are extremely
complex and sophisticated, and the manual rule design process is labor-intensive and error-prone. Moreover,
since these rules are designed for Java, they can hardly be extended to other programming languages.
Inspired by the great potential of Large Language Models (LLMs) for solving complex coding tasks, in
this paper, we propose a novel approach, named Cope2AP], to automatically perform APIzation for Stack
Overflow code snippets. CoDE2API does not require additional model training or any manual crafting rules
and can be easily deployed on personal computers without relying on other external tools. Specifically,
CopE2API guides the LLMs through well-designed prompts to generate well-formed APIs for given code
snippets. To elicit knowledge and logical reasoning from LLMs, we used chain-of-thought (CoT) reasoning
and few-shot in-context learning, which can help the LLMs fully understand the APIzation task and solve it
step by step in a manner similar to a developer. Our evaluations show that CopE2API achieves a remarkable
accuracy in identifying method parameters (65%) and return statements (66%) equivalent to human-generated
ones, surpassing the current state-of-the-art approach, APIzator, by 15.0% and 16.5% respectively. Moreover,
compared with APIzator, our user study demonstrates that CopE2API exhibits superior performance in

“This is the corresponding author

Authors’ Contact Information: Yubo Mai, The State Key Laboratory of Blockchain and Data Security, Zhejiang Univer-
sity, China, 12021077@zju.edu.cn; Zhipeng Gao, Shanghai Institute for Advanced Study of Zhejiang University, China,
zhipeng.gao@zju.edu.cn; Xing Hu, The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China,
xinghu@zju.edu.cn; Lingfeng Bao, The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China,
lingfengbao@zju.edu.cn; Yu Liu, The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China,
3200103741@zju.edu.cn; JianLing Sun, The State Key Laboratory of Blockchain and Data Security, Zhejiang University,
China, sunjl@zju.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2994-970X/2024/7-ART104

https://doi.org/10.1145/3660811

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

https://doi.org/10.1145/3660811

104:2 Yubo Mai, Zhipeng Gao, Xing Hu, Lingfeng Bao, Yu Liu, and JianLing Sun

generating meaningful method names, even surpassing the human-level performance, and developers are
more willing to use APIs generated by our approach, highlighting the applicability of our tool in practice.
Finally, we successfully extend our framework to the Python dataset, achieving a comparable performance
with Java, which verifies the generalizability of our tool.

CCS Concepts: » Software and its engineering — API languages; - Computing methodologies —
Natural language processing.

Additional Key Words and Phrases: Stack Overflow, APIs, Large language models, Chain-of-thought, In-context
learning

ACM Reference Format:

Yubo Mai, Zhipeng Gao, Xing Hu, Lingfeng Bao, Yu Liu, and JianLing Sun. 2024. Are Human Rules Necessary?
Generating Reusable APIs with CoT Reasoning and In-Context Learning. Proc. ACM Softw. Eng. 1, FSE,
Article 104 (July 2024), 23 pages. https://doi.org/10.1145/3660811

1 INTRODUCTION

Stack Overflow (SO), one of the most popular Software Q&A (SQA) sites, plays an ever-increasing
role in helping developers to solve their daily technical problems. Among the vast amount of
knowledge shared on SO, code snippets hold particular significance as they are widely copied and
pasted by developers, offering practical solutions to their daily programming problems. However,
code snippets on SO are often unable to be used directly [45, 51, 64]. This is because SO code snippets
are mainly written for illustrative purposes and do not focus on reusing purposes (such as missing
import declarations) [32]. Creating a reusable API for the SO code snippet requires substantial effort
and is rather laborious and error-prone, even for accepted answers. Developers have to navigate
through and digest the SO posts, and apply ad hoc modifications on code snippets for their own
usage, such as carefully recovering missing import declarations, summarizing descriptive method
names, extracting proper method parameters and replacing them in method bodies, inferring return
statements and catching necessary exceptions. As reported by Terragni et al [52], it takes more
than four minutes for an experienced Java developer to build an API from a given SO code snippet.

Consider the Java code snippet in Fig. 1 as an example. The Java code snippet is posted by
an expert to solve the problem "How to remove specific value from string array in java?”. Making
this code snippet off the shelf is difficult which requires various necessary steps. (1) Recovering
missing import declarations. Missing variables, function definitions, or third-party dependencies
can cause code to crash during compilation, we thus need to recover missing import statements
(e.g., import java.util.regex.ArraylList;) at first. (2) Generating a meaningful method name
that precisely describes what the method does. A good method name should be self-explained and
intention-revealing, which can make the method much easier to understand, as well as to find
and use. On the contrary, a meaningless method name can obscure the meaning of the code and
waste developers’ time for searching and reusing. Therefore, we need to create a descriptive and
meaningful method name (i.e., removeItemFromStringArray) for the code snippet. (3) Identifying
the method input parameters and abstracting them in code snippets. Extracting suitable variables as
input parameters can provide good scalability for API reusing. For example, the variables str_array
and item are identified as input parameters passing to the API method. (4) Inferring the return
statements. After identifying the input of the code snippet, we also need to infer and add output
(i.e., return str_array) for the API method. (5) Create throws statements. To safely use the API,
it is necessary to declare exceptions that the method may throw. Finally, a skilled developer goes
through the above steps and successfully outputs a reusable API as shown in Fig. 1.

To automate the process of APIzation from SO code snippets, Terragni et al. [52] first proposed a
tool, named APIzator, to convert Java code snippets to compliable APIs that developers can easily

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

https://doi.org/10.1145/3660811

Are Human Rules Necessary? Generating Reusable APIs with CoT Reasoning and In-Context Learning 104:3

(R N (Reusable API A
Stack Overflow Code Snippet:
How to remove specific value from string array in java? package com.stackoverflow.api;
String[] str_array = {"iteml","item2","item3"}; import java.util.Arraylist; /,/"0
List<String> list = new import java.util.Arrays; 4
ArrayList<String>(Arrays.asList(str_array)); import java.util.List;
str_array = list.toArray(new String[0]); public class Human12812355 {
<
APIzation conducted by skilled developer public static String[] removeltemFromStringArray(

String[] str_array e
String item 9
) throws Exceptione{-—____

List<String> list = new ”6
ArrayList<String>(Arrays.asList(str_array));

list.remove (item);

str_array = list.toArray(new String([0]);

return str_array;<--___

o | Recover import statements

e| Create the method name

e| Create the parameter list

@ [Create return statements

o

|

|

|

|
@ [create throws statements] ’
N\ J U J

Fig. 1. Human APIzation of A SO Code Snippet.

incorporate. The authors carefully designed a number of rules for Java to identify the method input
parameters and return statements and employed the Part-Of-Speech (POS) Tagging technique
to generate method names. As a result, APIzator takes the SO Java code snippet as input, after
going through manually designed rules, APIzator outputs a compliable API as output. APIzator
achieved a promising performance, for 81.5% APIs generated by APIzator, either method parameters
or return statements are identical with ground truth. To understand the rationale for APIzator’s
good performance and its applicable scenario in practice, we conduct an in-depth analysis of their
evaluation results. We find that: (1) Most of the APIs generated by APIzator are hardly to be
applied in practice. According to our investigation, 90% of these APIs are not applicable. This
is because APIzator ignores the importance of meaningful names. APIzator generated method
names by naively using the verb and its object from question titles, which are often imprecise
and misleading. The inconsistency between method names and their implementations can confuse
developers and even cause the introduction of bugs in the future [48-50]. (2) The rules designed
for APIzator are too complex and specific, and can hardly generalize to other programming
languages. For example, APIzator heavily relies on tools (e.g., CSNIPPEX [51] and BAKER [46] for
recovering missing variables and type declarations) and complex rules (e.g., using PATT-const to
recognize hard-coded initializations), implementing APIzator and adjusting it to other programming
languages require a substantial manual effort. Therefore, the key research question we ask in this
work is: Can we design models to generate applicable APIs for SO code snippets and generalize to other
programming languages easily?

The recent success of ChatGPT [34] based on GPT-3.5 demonstrates the remarkable ability of large
language models (LLMs) [5, 54, 55, 57, 58, 68] to comprehend human questions and assist in coding-
related tasks.! Inspired by the impressive capabilities of LLMs in code generation [6, 14, 15, 25, 31, 69],
in this work, we propose Cope2API, a novel approach to automatically generate reusable and
applicable APIs for SO code snippets. Notably, the underlying approach of CopeE2API is prompt
engineering [13, 29], i.e., prompting the tasks to generate desired output, which is extremely
lightweight compared to rule-based methods with manually designed rules and ML-based methods
with massive training data. CODE2API leverages few-shot learning [2, 11] and chain-of-
thought reasoning [26, 59] to elicit human knowledge and logical reasoning from LLMs to
accomplish the APIzation task in a manner similar to a skilled developer. Few-shot learning
aims to solve the problem of how to train a model from a small number of examples. Regarding

!https://platform.openai.com/docs/model-index-for-researchers

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

104:4 Yubo Mai, Zhipeng Gao, Xing Hu, Lingfeng Bao, Yu Liu, and JianLing Sun

LLMs, few-shot learning is usually implemented using few-shot prompts [16, 28]. Specifically, a few
task-specific examples are incorporated into the prompts to facilitate the model’s understanding of
desired input-output patterns for a given task. In this work, we employ few-shot prompts to help
LLMs recognize the APIzation task. Moreover, we provide LLMs with detailed chain-of-thought
reasoning from developers, allowing LLMs to refactor the code with the same thought process
of developers (e.g., identifying method inputs/outputs, summarizing descriptive method names,
handling exceptions and outputting a compliable API).

A comprehensive evaluation was conducted to evaluate the effectiveness of our tool. For a
fair comparison, we reuse the evaluation set provided by Terragni et al. [52], which contains 200
human-written APIs for SO code snippets. (1) Firstly, we assess the accuracy of identifying method
parameters and return statements of Cope2AP], for 132 (65%) and 130 (66%) APIs, CoDE2API
extracts equivalent method parameters and return statements with developers respectively. For 173
(86.5%) APIs, either parameter list or return statements are equivalent. (2) APIzator is inapplicable
because its generated method name is usually imprecise and misleading, we thus conduct a user
study, wherein the quality of the method names generated by Cope2API is compared against those
produced by APIzator and even human developers. The user study shows that CopE2API achieved
human-level performance on generating high-quality method names and reusable APIs. (3) Instead
of relying on complicated designed rules and requiring support from other tools, our framework is
prompt-based and can easily apply to other programming languages. We verify the generalizability
of our tool on Python, successfully creating 5,000 reusable APIs for SO Python code snippets. (4)
We have implemented our tool as a Google Chrome extension to facilitate the developer’s daily
development. Our paper makes the following contributions:

e We thoroughly analyze the state-of-the-art tool, APIzator, and point out its limitations on
APIzation tasks.

e We propose an extremely lightweight and flexible approach, Cope2AP], that utilizes prompt
engineering with few-shot learning and chain-of-thought reasoning to harness LLMs’ knowl-
edge for creating reusable APIs. The evaluations and user study show the superiority of our
model over the state-of-the-art baseline. Surprisingly, our approach achieves comparable or
even better performance on this task than human developers.

e We adapted our approach to Python for generalization, and we released a new dataset, which
contains 6,023 reusable Java APIs and 5,000 reusable Python APIs generated from SO code
snippets. These off-the-shelf APIs can speed up the searching and reusing of SO code snippets.

e We have implemented our approach as a Chrome extension tool [7], and released our replica-
tion package [8], which can facilitate developers’ daily development and inspire follow-up
research.

2 PRELIMINARY STUDY
2.1 Limitations of APlzator

Terragni et al. [52] first introduced the task of APIzation. That is, for a given SO code snippet without
method declaration, convert the code snippet into a functional and compilable APL To achieve this,
the authors proposed a rule-based approach, namely APIzator, to complete this task automatically.
They claim APIzator can generate “reusable” APIs and 81.5% generated APIs are identical (either
method parameters or return statements) to those produced by humans. However, this claim is
rather shaky because an API can hardly be claimed as “reusable” if it only has correct method
parameters or correct return statement, crafting a meaningful API method name is undeniably
crucial for ensuring the true reusability of an APL

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

Are Human Rules Necessary? Generating Reusable APIs with CoT Reasoning and In-Context Learning 104:5

Motivating Example 1 Motivating Example 2
e N\ 3
@ How to get the last Sunday before current date? @ How to remove leading zeros from alphanumeric text?
public class APIzator12783806 { public class APIzator2800839 {
public static int get() throws Exception { public static void removeZero(String[] in) throws
Calendar cal = Calendar.getInstance(); Exce?"’i"“ { i
cal.add(Calendar.DAY_OF_WEEK , for (String s : im) {
~(cal.get(Calendar.DAY_OF_WEEK) - 1)); jyj;e‘;a::;fg‘g“gf(i, o ey a gy
return cal.get(Calendar.DATE); ‘Tep ’ ’
} }
¥ ¥
. 7 . J

Fig. 2. APl Examples Generated by APlzator.

In this preliminary study, we perform an in-depth analysis of their experimental results. Par-
ticularly, the first author of this paper manually examined their released evaluation set, which
contains 200 API pairs (one generated by APIzator and the other one by human experts). It is worth
mentioning that the preliminary study was conducted by the first author, which may introduce
personal bias. A more comprehensive evaluation was conducted in Section 4.2. Regarding the
preliminary study, the examiner carefully reviewed each linked SO post to determine if the method
names generated by APIzator were imprecise and/or misleading. As a result, 92.5% (185) APIs’
method names are not applicable (either imprecise or misleading) in practice. If we redefine the
criteria of a "reusable” API to include not only identical method parameters and return statements
but also meaningful method names, the reusable API ratio of APIzator significantly drops
from 81.5% to 1.5% (only 3 APIs meet this criteria). The reason for this phenomenon is that
APIzator is a rule-based method, it generates method names by naively extracting verb + object
from the question title, which is too simple to cover the complex scenarios in practice, resulting
in a large number of misleading and meaningless method names. Another limitation of APIzator
is that it is specifically designed for handling Java code snippets, its manually designed rules and
third-party tools can hardly adapt to other programming languages.

2.2 Motivating Examples

We provide two motivating examples from APIzator evaluation results as shown in Fig. 2. In the
first motivating example, APIzator generates a method named get () for the SO post “How to get
the last Sunday before current date?”, the method name of this API is unclear and meaningless,
developers who want to reuse this API have to carefully read through the method implementation
to figure out what the method does. Moreover, the APIzator generated method names can even
mislead developers to misuse API and potentially lead to the introduction of bugs in
future code. For example, in motivating example 2, the APIzator naively extracted the verb
+ object from the question title (i.e., “How to remove leading zeros from alphanumeric text”),
making a method name removeZero() for this post. A developer can easily misuse this API by
assuming this method removes all zeros from the input string, however, what this code snippet
does is only removing prefixed zeros from a string. Overall, after manually examining Terragni et
al. [52] released evaluation dataset, 197 out of 200 APIs can not be reused in practice due to their
meaningless or misleading method names and limited method implementations, which motivates
us to develop more advanced models for APIzation task.

3 OUR APPROACH

In this section, we present a novel approach, namely Cope2AP]I, that leverages LLMs to transform
SO code snippets into reusable APIs. The overall framework of our approach is illustrated in Fig. 3.
As shown in Fig. 3, for a given SO code snippet, we first extract its associated question title and

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

104:6 Yubo Mai, Zhipeng Gao, Xing Hu, Lingfeng Bao, Yu Liu, and JianLing Sun

Stack Large Generated
Overflow Language Model Reusable API

API

LLMs API Generation

Chrome Extensions
’ API
— 9O —

Tool Practical Usage

000 L

LLMs for
APlzation

Fig. 3. The Workflow of Our Approach.

question body from the question post, then the question title, question body along code snippet
are used to make our APIzation task-specific prompts. Since LLMs are not specifically designed
to handle API generation, we employ prompt role designation, chain-of-thought reasoning, and
few-shot learning strategy to guide LLMs to generate the desired output. Compared with APIzator,
our approach is extremely lightweight without requiring any manually designed rules and/or
massive training data.

3.1 Data Preparing

Since our task targets SO code snippets, we downloaded the official SO data dump of March 2019
from StackExchange (the same data dump used by Terragni et al. [52]). The SO data dump contains
timestamped information about the posts. Each post comprises a short question title, a detailed
question body, corresponding answers, and multiple tags. The code snippets in SO provide solutions
for practical problems, however, relying solely on these code fragments can pose difficulties in
understanding their intended purpose. To enhance comprehension, we enrich the information
provided to the LLMs by including the surrounding code context. In particular, for a given SO
answer code snippet (enclosed by (code) tags), we retrieve its associated question title and question
body, providing sufficient context for LLMs to capture the problem purpose and code semantics.

3.2 Prompt Engineering

The underlying approach of Cope2API is prompt engineering, i.e., using natural language prompts
to guide LLMs to complete specific tasks. In this work, we leverage prompt role designation,
chain-of-thought reasoning, and few-shot in-context learning to harness LLMs” knowledge
for automated API construction for SO code snippets.

3.2.1 Prompt Role Designation. In prompt engineering, role designation is a method where LLMs
are designated a role for solving a specific task. Assigning a role to LLMs provides it with the
problem context that aids its understanding of the task context, and leads to more accurate and
relevant responses. In this study, since we aim to convert code snippets (Java in this setting) into
reusable APIs, we designate the role of LLMs to act as a skilled Java developer. After assigning
the role to LLMs, we clearly inform the LLMs regarding our task as follows: “Give you a context
including a question title, a question post and an answer post, your task is to transform the Java code
snippet within the answer post into Java method based on the context.” The prompt role designation

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

Are Human Rules Necessary? Generating Reusable APIs with CoT Reasoning and In-Context Learning 104:7

explicitly indicates the input and output of the task, eliciting the programming knowledge of LLMs
for completing this APIzation task.

3.2.2 Chain-of-Thought Reasoning. Chain-of-thought reasoning is an important strategy for prompt
engineering. It enables the LLMs to split a complex task into several relatively simple steps and
generate a series of intermediate outputs that lead to a reasonable result.

Our task of transforming a code snippet into a reusable API is a non-trivial task, it requires logical
thinking to understand the SO post and a coherent series of intermediate steps to create APIs. In
order to construct a reasonable CoT, based on previous research [13, 59], we invited two developers
with 12 years of Java programming experience for this task. Two developers were asked to manually
transform 15 code snippets randomly extracted from the dataset released by APIzator (9,901 SO code
snippets) into reusable APIs and write down their core steps as their chain-of-thought reasoning
steps. Afterwards, the first author optimized their thinking process into an 8-step chain-of-thought
reasoning by considering the following guidelines: (1) Write clear and specific instructions (e.g.,
“recover import statements based on the code snippet”); (2) Ask for a structured output (e.g., “please
output the results in the following format”); (3) use delimiters to clearly indicate distinct parts (e.g.,
wrapping code with <>). Finally, we designed an 8-step thinking process as chain-of-thought
reasoning for LLMs as shown in Table 1, endowing LLMs to convert code snippets with
the same thought process as skilled developers. Among them, Step4 - Step6 are the core steps
of chain-of-thought reasoning, guiding LLMs to generate meaningful method names, identify input
parameter lists and infer output return statements step-by-step. Step3 creates the default modifiers
for the method. StepI and Step7 are used to infer import and throws statements. Step2 and Step8
are used to facilitate subsequent data processing. Overall, this step-by-step thinking guides LLMs
to generate expected reusable APIs.

3.2.3 Few-Shot Learning. With the increasing ability of LLMs, in-context learning has been widely
adopted as zero-shot learning and few-shot learning. As LLMs are not specifically trained with SO
code snippets, we adopt the few-shot learning strategy in this study. Few-shot learning is utilized
to augment the context with a few examples of desired inputs and outputs, which helps the model
elicit specific knowledge and abstractions needed to complete the task.

To identify representative examples for few-shot learning, we first randomly extracted 100
examples from the dataset used in Section 3.2.2. We then selected our representative examples by
the following criteria: (1) Since the CoT reasoning plays a vital role in guiding LLMs to perform the
APIzation task step by step in a way similar to a developer, our first rule for choosing few-shot
examples is to cover different steps (each comprising at least 7 steps) in the CoT reasoning process.
(2) Considering the token limit of LLMs, we then removed the code samples that were too long
or too short, only keeping moderate-length code snippets ranging from 3 to 10 lines. Following
the filtering process, we identified 17 examples meeting the above criteria. Considering the input
length limitations of LLMs mentioned in previous studies [13, 59], after further discussing the
quality and diversity of these examples with two developers in Section 3.2.2, we finally selected 5
representative examples, one of which is illustrated in Table 1.

3.24 Prompt Construction. Our final prompt consists of six parts: prompt role designation, chain-
of-thought reasoning, example input, example output, test input and format constraints. Each part
plays a distinct role as follows:

e Prompt Role Designation: It offers a comprehensive overview of the SO code snippet
APIzation task, setting the context for the subsequent steps.

e Chain-of-Thought Reasoning: It guides our model step by step, enabling the LLMs to
solve the APIzation problem with the same thought process as developers.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

104:8 Yubo Mai, Zhipeng Gao, Xing Hu, Lingfeng Bao, Yu Liu, and JianLing Sun
Table 1. The Example of Prompt Engineering of Java APlzation.
Prompt Instantiation
Role Give you a context including a question title, a question post and an answer post, your task is to transform
Designation | the Java code snippet within the answer post into Java method based on the context.
C}:)z;m To solve the problem, do the following:
Step 1 - Recover import statements based on the code snippet. If necessary, it can be none.
Thought . -
Step 2 - Define a public class Chatgpt that will be used to wrap the method.
Step 3 - Create “public static” modifier for the method.
Step 4 - Create the method name based on the context or the code snippet itself.
Step 5 - Infer parameter list based on the code snippet. If necessary, it can be none.
Step 6 - Infer return statements based on the code snippet. If necessary, it can be none.
Step 7 - Infer throws statements based on the code snippet. If necessary, it can be none.
Step 8 - Output the complete code based on the above results.
Example Here are some examples:
input Example one:
Question title:
How to convert int[] into List<Integer> in Java?
Qustion post:
How do I convert int[] into List<Integer> in Java? .., I'll pick that one as the best to show the fact
that this functionality is not part of Java.
Answer post:
There is no shortcut for converting from int[] to List<Integer> ..., you have to make a utility method.
<the code snippet in this answer>
Code snippet in the answer post:
int[] ints = {1, 2, 3};
List<Integer> intList = new ArrayList<Integer>(ints.length);
for (int i : ints){
intList.add(i);
3
Example Specific steps:
output Step 1: import java.util.ArraylList;import java.util.List;
Step 2: public class Chatgpt {}
Step 3: public static
Step 4: convertIntArrayTolist
Step 5: (int[] arr)
Step 6: return intlList;
Step 7:
Complete code:
import java.util.ArraylList;
import java.util.lList;
public class Chatgpt {
public static List<Integer> convertIntArrayTolList(int[] arr){
List<Integer> intList = new ArraylList<Integer>(arr.length);
for (int i : ints){
intList.add(i);
}
return intlList;
3
3
Test Now, give you the following context: Question title: <Question title here>; Question post: <Question
Input post here>; Answer post: <Answer post here>; Code snippet in the answer post: <Code snippet here>
Format Please output the results in the following format:
Constraints

Specific steps: <the results of step 1-7>
Complete code: <the result of step 8>

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

Are Human Rules Necessary? Generating Reusable APIs with CoT Reasoning and In-Context Learning 104:9

¢ Example Input and Example Output: The examples further illustrate the task’s require-
ments and show the desired output format, aiding the model in understanding the expectations
more distinctly.

e Test Input: This part represents the problem that our model currently needs to solve, serving
as a practical evaluation scenario.

e Format Constraints: They define the specific input form for the JAVA APlIzation task and
the expected output form of the LLM.

We directly connect these six parts as our final prompt, we have provided a complete prompt in our
replication package [8]. After feeding the constructed prompts to the LLMs, the LLMs will output
the result of APIzation which appears after the “Complete code” field as shown in Fig. 1. We use
regular expressions to post-process the output of the LLMs and save the generated APIs in the
“Code2APIld.java” file for evaluation, where “Id” refers to the answer Id of the corresponding SO
answer post.

3.3 The Implementation of the LLM

For the LLMs, We chose the state-of-the-art GPT-3.5-turbo model,? one of the best instruction-tuned
LLMs [30, 35] as our base model, which has been proven to have excellent abilities in tasks such as
text summarization [65] and machine translation [22]. To ensure the uniqueness of the experimental
results, we set the temperature parameter to 0 during all experiments to make the output of LLMs
consistent. Notably, during evaluation, only one code snippet’s prompt (out of 200 code snippets)
exceeded the maximum input token limit of GPT-3.5, which means the GPT-3.5-turbo model is
sufficient to handle this APIzation task.

4 EMPIRICAL EVALUATION

In this section, we conducted comprehensive experiments to evaluate the performance of our
approach. Specifically, we aim to answer the following research questions:

® RQ-1: How effective is our CODE2API in identifying the method parameters and return statements
compared with baselines?

e RQ-2: How effective is our CODE2API in generating meaningful method names & are developers
willing to use the APIs generated by our tool?

® RQ-3: How effective do chain-of-thought reasoning and few-shot in-context learning contribute
to the overall performance?

® RQ-4: Can our CoDpE2API easily generalize to other programming languages?

e RQ-5: How effective is our CoDE2API in generating compilable APIs?

4.1 RQ-1: Method Parameters and Return Statements Evaluation

4.1.1 Experimental Setup. Terragni et al. [52] first introduced the task of APIzation (i.e., converting
SO code snippets into reusable APIs) and proposed APIzator for this task. They established a
benchmark comprising 200 APIzations performed by 20 developers. Their evaluation dataset
contains 200 pairs of APIs, one generated by the human developer and one generated by APIzator.
In their research paper, they compared each pair to evaluate if APIzator can generate identical
method parameters and return statements with human developers. For a fair comparison, we reused
the evaluation dataset released by Terragni et al. [52]. If we extend their evaluation dataset with
new evaluators, it may introduce extra bias from the labeling process. Particularly, for each code
snippet in their evaluation dataset, we retrieve its associated question title, question body, and
answer body to make our prompt (detailed in Section 3). Subsequently, we input each constructed

Zhttps://platform.openai.com/docs/model-index-for-researchers

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

104:10 Yubo Mai, Zhipeng Gao, Xing Hu, Lingfeng Bao, Yu Liu, and JianLing Sun

Table 2. Performance Comparison of Different Approaches

Approach M-Acc P-Acc R-Acc PR-Acc

APlIzator (Ori) 31.5% 56.5% 57.5% 81.5%

APlzator (Cur) 325% 56.5% 57.5% 81.5%
Code2API 43.5% 65.0% 66.0% 86.5%

prompt into LLMs to generate a reusable API As a result, we also obtained 200 APIs generated by
our Cope2API Therefore, We can make a pairwise comparison between our CopE2API’s generated
API and human-generated API to estimate our approach effectiveness.

4.1.2 Evaluation Metrics. APIzator evaluated its effectiveness with respect to two aspects: the
accuracy of identifying method parameters and the accuracy of identifying return statements. In
this research question, we follow their experiment settings and first evaluate method parameters
and return statements generated by our approach. In particular, we consider the following three
evaluation metrics:

e Equivalent Method Parameters: Given an API pair (API}, APL), let P; and P, denote the
parameter list of API; and API, respectively. P; and P, are considered to be equivalent if they
are both empty or contain identical parameters. Two parameters are identical if they: (i) have
the same type; (ii) refer to the same parameter in the method body (by manual inspection). It
is worth mentioning that we use a slightly different definition compared with Terragni et
al. [52], we do not require identical parameters to have same identifiers (i.e., variable names),
since parameters with different identifiers can also be equivalent.

e Equivalent Return Statements: We reuse APIzator’s definition of the identical return state-
ments [52] as equivalent return statements in this study. That is, given an API pair (API;, APL,),
let Ry and R, denote the return statement of API; and API, respectively. Ry and R, are consid-
ered as equivalent if they: (i) both have void as the return type; or (ii) have the same return
type in the method header and have identical return statements in the method body.

e Equivalent Method Implementation: Given an API pair (API;, APL,), M; and M, denote the
method implementation of API; and API, respectively. M; and M, are considered to be
equivalent if: (i) API; and APIL, have equivalent method parameters; and (ii) API; and AP,
have equivalent return statements; (iii) the method body of API; and API, implement the
same functionality.

In this research question, we aim to evaluate our CODE2API generated APIs and human-generated
APIs in terms of the three aforementioned evaluation metrics: (1) the accuracy of equivalent method
parameters (denoted as P-Acc); (2) the accuracy of equivalent return statements (denoted as R-Acc);
(3) the accuracy of equivalent method implementations (denoted as M-Acc). (4) We use PR-Acc to
denote the proportion of APIs with either equivalent parameter lists or equivalent return statements.

4.1.3 Evaluation Results. The evaluation results of our CopE2API and APIzator with respect to the
above evaluation metrics are shown in Table 2. The original performance of APIzator on these four
evaluation metrics has been tested and reported (i.e., the P-Acc referred to their RQ-2, the R-Acc
referred to their RQ-3, M-Acc referred to their RQ-1 and PR-Acc referred to their discussion) and
we summarized them in Table 2 as APIzator (Ori). Since we make a slightly different definition on
equivalent method parameters, we recalculate the P-Acc, M-Acc, and PR-Acc based on our current
standards and denote as APIzator (Cur).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

Are Human Rules Necessary? Generating Reusable APIs with CoT Reasoning and In-Context Learning 104:11

From Table 2, it can be seen that: CoDE2API significantly outperforms APIzator in all
evaluation metrics by a large margin, achieving an M-Acc of 43.5%, a P-Acc of 65.0%, an R-Acc
of 66.0%, and a PR-Acc of 86.5%, These are respectively 11.5%, 8.5%, 8.5%, and 5% higher than the
corresponding metrics of APIzator. In other words, our approach is on average 15.0% and 16.5% more
accurate than the state-of-the-art tool, APIzator, in identifying equivalent method parameters and
equivalent return statements. We attribute this to the following reasons: (i) Compared with APIzator
heavily relies on manually crafted rules, LLMs have their own ability to perform logical inference and
deductive reasoning; (ii) We use chain-of-thought reasoning in our prompt engineering, endowing
LLMs to perform APIzation with the same thought process of developers; (iii) We also use few-shot
in-context learning in our prompt engineering, guiding LLMs to infer correct outputs step-by-step.

4.1.4 Manual Analysis. As can be seen from Table 2, there are a number of APIs generated by
our approach that are not equivalent to humans’. To explore the reason why our approach fails,
we analyzed all error cases where CopE2API fails to generate "correct method parameters" and/or
"correct return statements", and categorized them into the following three types: (1) Reasonable or
superior to human-generated APIs; (2) Missing necessary method parameters or return statements;
(3) Others. We detailed the analysis of these three types of failed cases as follows:

Regarding typel failed cases, 30 failed cases of method parameters and 32 cases of return
statements belong to this category. In RQ-1, we only consider exact matches with human-generated
APIs as "correct", however, a code snippet has various forms of reusable APIs. If these typel failed
cases are recounted, the performance of Cope2API can be further improved by 15% and 16%
respectively. For example, a common failed situation is that our approach-generated APIs
are different from humans’ but reasonable. Different human developers may create different
reusable APIs depending on their coding preferences. In other words, for a given SO code snippet,
there is more than one "correct answer" in terms of its reusable API. An example of this situation is
shown in Fig. 4. As can be seen, for the SO post, “How to get operating system in Java?”, the human-
generated API is shown on the left while CoDE2API generated API is shown on the right. It is clear
that Cope2API generated the same method name and method body as humans, the only difference
between these two APIs is the return type. The human developer returns the operating system
information as a String type by concatenating os.name, os.version and os. arch together, while
CopE2API returns the information as an Array of strings. Even the return types are different, both
API implementations are reasonable and can be considered as reusable. Another common failed
situation is that our approach-generated APIs are better than the ones written by humans.
An example of this situation is shown in Fig. 5. The code snippet was extracted from the SO post
“How to initailize byte array of 100 bytes in java with all 0’s”, the skilled developer refactored this
code snippet into a method named initializeByteArray(). However, this API is still difficult to
reuse in practice because the API is specifically written to solve the above post, this API is hard
to scale to other users’ requests by fixing the size (i.e., 100) and value (i.e., 1) of the byte array.
Compared with human-written APIs, our approach-generated APIs are more scalable and easy to
use, regarding the above SO code snippet, CODE2API successfully inferred the size and value as
method parameters for initializing a byte array, allowing the APIs can be reused by developers
with diverse requests.

Regarding type2 failed cases, 25 method parameters failed cases and 31 method return statement
failed cases belong to this category. Cope2API failed to identify necessary parameters and/or
return statements for this category, because some parameters are too subtle (e.g., list index) and
thus difficult to be detected by LLMs. Regarding type3 failed cases, 15 method parameters failed
cases and 5 return statement failed cases fall into this type. LLMs are not perfect, they can return
the wrong parameter types or irrelevant return statements mismatching code context or method

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

104:12 Yubo Mai, Zhipeng Gao, Xing Hu, Lingfeng Bao, Yu Liu, and JianLing Sun

design. Employing or fine-tuning LLMs for code (e.g., CodeLlama [40]) may improve our model’s
performance on this task, which is an interesting research direction for our future work.

@ Human Generated API © Code2API Generated API
public class Human10008565 { public class Code2API10008565 {
public static String getOperatingSystem() { public static String[] getOperatingSystem() {
return (return new Stringl[] {
System.getProperty("os.name") + " " + System.getProperty("os.name"),
System.getProperty("os.version") + " " + System.getProperty("os.version"),
System.getProperty("os.arch") System.getProperty("os.arch")
)s };
* ¥
* ¥

Fig. 4. An Example of Reasonable APIs generated by Code2API.

@ Human Generated API © Code2API Generated API
public class Human16475547 { public class Code2API16475547 {
public static byte[] initializeByteArray(
public static byte[] initializeByteArray () { int size, byte value) {
byte [l bytes = new byte[100]; byte[] bytes = new bytelsizel;
Arrays.fill(bytes, (byte) 1); Arrays.fill(bytes, value);
return bytes; return bytes;
¥ ¥
} }

Fig. 5. An Example of Better APls Generated by Cobe2API.

4.2 RQ-2: Method Name Quality and API Preference Evaluation

4.2.1 Experimental Setup. As mentioned in Section 2, one of the key limitations of APIzator is
it generates a large number of meaningless and misleading method names. They ignored the
importance of a descriptive method name and did not evaluate method name quality in their study.
Therefore, in this research question, we aim to evaluate the method name quality generated by
our approach and benchmarks (including APIzator and human-generated APIs). Since it is difficult
for automatic evaluation to judge the semantic correctness of a method name, we conducted a
user study for this research question. Terragni et al. [52] invited 20 participants with 9.8 years of
Java programming experience on average to make the ground-truth dataset, to reduce the bias of
human evaluators, we conducted our human evaluation with a comparable experiment scale (18
participants) and evaluators with similar Java programming experience (10.9 years on average).
The volunteers in our user study include 10 PhDs, 2 Postdoc researchers, and 6 Java developers. All
of whom are not co-authors, major in computer science and/or software engineering and have 10.9
years of experience in Java programming on average (min 4, median 10, and max 15). We reuse
the evaluation dataset in RQ-1, which contains 200 API triplets, (APIy, API4, APIc), representing
the APIs generated by human, APIzator, and our CoDE2API respectively. We then divided 200
API triplets into six sub-datasets (each sub-dataset contains 33-34 API triplets). After that, each
sub-dataset was evaluated by three volunteers independently. In particular, each volunteer was
given a SO post (including the question title and a link to the post) and three APIs, he/she needed
to do the evaluation in terms of two aspects: method name quality and overall API preference
(detailed in Section 4.2.2). It is worth mentioning that participants did not know which API was
generated by which method.

4.2.2 Evaluation Metrics. We use method name expressiveness to evaluate the quality of a method
name and the willingness to use to evaluate the overall API usage preference respectively.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

Are Human Rules Necessary? Generating Reusable APIs with CoT Reasoning and In-Context Learning 104:13

Table 3. The Method Name Expressiveness Scores and Willingness to Use

MNE SCORE 1 2 3 4 Avg P-value | WILLINGNESS
Human 25 (42%) 77(12.8%) 138(23.0%) 360 (60.0%) 3.39 1.27¢-8 96 (48.0%)
APlzator 136 (22.7%) 248 (41.3%) 156 (26.0%) 60 (10.0%) 2.23 1.85e-122 3 (1.5%)
CoDE2API 14 (23%) 29(48%) 111(18.5%) 446 (743%) 3.65 - 101 (50.5%)

Method Name Expressiveness: Method name expressiveness refers to the matching degree
between the method name and the method implementations. In our user study, each volunteer
was asked to rate the expressiveness of a method name on a scale between 1 and 4 by reading the
method name, method implementation, and its associated posts. Score 1 indicates the method name
and the method body implementations are irrelevant. Score 2 indicates the method name and the
method body are of low relevance. Score 3 indicates the method name and the method body are of
high relevance. Score 4 indicates the method name and the method body match exactly and the
method name can fully express the intention of the method.

Willingness to Use: Willingness to use measures the best API a user prefers when they per-
form daily software development. Willingness to use justifies how likely the generated APIs can
elicit further practical usage in software development. In our user study, for a given API triplet
(APIy, API4, API¢), after each participant rates method name expressiveness for each API can-
didate, we ask them to choose the best API from the three candidates by their own developing
experience. The evaluators were blinded as to which API was generated by which method. Since
different users have their own preferences for choosing the best APIs, the final results are deter-
mined by the majority of voting. When the best API selected by three evaluators was inconsistent,
the first author played the role of a mediator to discuss with the corresponding three evaluators to
reach a consensus. Among human evaluation processes for selecting the best API, only two cases
suffered from this situation, the influence of the first author is rather limited.

4.2.3 Evaluation Results. Finally, we collected 600 groups of human evaluation results from 18
evaluators. Each group contains three method name expressiveness scores and the best API among
the three API candidates. Since each API was evaluated by three different evaluators, we combined
all six sub-datasets human evaluation results and calculated the Cohen’s Kappa [9] coefficient
between the three groups of user ratings, which were 0.67, 0.7, and 0.71 respectively, all greater
than 0.6. This indicates a substantial agreement among the different groups of user ratings [27]. All
evaluation results are demonstrated in Table 3.

From Table 3, we can observe that: (1) APIzator achieved the worst performance regarding
method name expressiveness. Only 10.0% method names generated by APIzator get a score
of 4, and 64% method names are rated by developers as low-quality (score 1 and score2), which
means more than half of the method names generated by APIzator are irrelevant and are difficult
to reuse directly. (2) Users mainly rate APIzator’s method names as Score 3 or Score 2 (i.e.,
67.3%), this is reasonable because APIzator extracted the verb + object from the question title
as method names, which has a relationship with the code snippets. However, this Part-Of-Speech
tagging technique is too simple to cover complex scenarios in practice, 22.7% method names are
irrelevant with the method implementation. (3) Our approach outperforms APIzator by a
large margin regarding the method expressiveness, more surprisingly, the method names
generated by our tool are even better than the human-written method names. 74.3% method
names generated by our approach obtain a score of 4 regarding method name expressiveness and
18.5% method names obtain a score of 3. In other words, our model rarely outputs low-quality or
irrelevant method names (i.e., only 7.1%). We attribute the promising performance of CopE2API

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

104:14 Yubo Mai, Zhipeng Gao, Xing Hu, Lingfeng Bao, Yu Liu, and JianLing Sun

on generating method names to the following reasons: (a) the LLMs’ great potential for natural
language understanding and logical reasoning; (b) we use chain-of-thought reasoning to endow
LLMs to perform APIzation with the same thought process of developers; (c) we use few-shot
in-context learning to guide LLMs to infer correct outputs step-by-step; (d) we provide sufficient
context (e.g., question title, question body and answer body) to LLMs for inference. (4) We also
conducted Mann-Whitney U rank tests [42] to calculate the p-values between our approach and
each of the baselines. The p-values are substantially less than 0.01, which shows the method name
expressiveness scores of our model are significantly better to APIzator and Human. (5)
The last column of Table 3 shows users’ preferences (i.e., willingness to use) when picking the best
API from three candidates. As can be seen, 50.5% of user selections chose our approach-generated
APIs as their first choice, while 48.0% chose human-generated APIs as best, and only 1.5% selected
the APIzator-generated APIs. The best API evaluation results are consistent with the method
name quality results, demonstrating that, for this APIzation task, our proposed approach has
achieved a comparable or even better performance than skilled human developers.

4.2.4 Manual Analysis. To investigate the reasons why our approach achieves remarkable perfor-
mance in method name expressiveness and willingness to use, we carefully investigated a number of
API triples (APIy, API4, APIc) where APIc is the best. The manually examined examples are shown
in Fig. 6. From these examples, we can see that: (1) Regarding the method name expressiveness,
the advantage of our approach is obvious. As shown in the first group of API triplets (colored in
green), given the code snippet from the post “How to append a byte to a string in Java?”, the method
name generated by Cope2API (i.e., appendByteToString) is more clear and precise than the name
created by humans (i.e., byteToString) and APIzator (i.e., appendByte). Moreover, the method
parameters extracted by ConpE2API are more meaningful and descriptive (e.g., byteToAppend)
than human-summarized ones (e.g., someByte). This suggests that summarizing meaningful names
is a non-trivial task for humans, which can be time-consuming and error-prone. CopE2API can
assist developers effectively. (2) Regarding the willingness to use metric, users prefer to adopt our
approach generated API first. As shown in the second group (colored in orange), the code snippet
comes from the post “How to create a sequence of numbers in java”, only CopE2API inferred the
length as a method parameter, allowing users to create arbitrary length number sequence. Another
example is shown in group 3 (colored in blue), similarly, only APIzator allows users to add any
number of zeros to the left through the parameter length. In addition, the CopE2API generated
method name leftPadWithZeros is self-explained, much more clear than getStringFormatting
(generated by humans) and padInteger (generated by APIzator). It is no surprising that all users
prefer to adopt our approach generated APIs for this case.

CoDE2API rarely generates irrelevant APIs for SO code snippets, only 9 cases are rated by
developers as low-quality (i.e., scored below 3). After manual investigation, these low-quality cases
are mainly caused by three reasons: (1) Inconsistency between question title and code functionality
(5 cases). The fourth group (colored in yellow) of Fig. 6 shows such an example. The code snippet
is to get the maximum value of an array, however, APIzator generated getMinMaxValue method
name for this code, which is inconsistent with the method implementations. The reason for this
situation is that CopE2API not only considers the semantics of the code snippet, but also the post
question title “how to get the minimum, maximum value of an array?”, the inconsistency between
the post and its code solution misguided our CopE2API to generate incompatible method names.
Since CoDE2API relies on post context for generation, these noise data should be detected and
removed for our model in future work. (2) Exceeding max token limit (1 case). One case failed
to get responses from Code2API because it exceeded the maximum number of input tokens of
GPT-3.5-turbo (e.g., 4,096). To fundamentally solve this problem, it is necessary to increase the

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

Are Human Rules Necessary? Generating Reusable APIs with CoT Reasoning and In-Context Learning 104:15

© Code2API Generated API (Post 15977262) @ Human Generated API (Post 15977262)
public class Code2API15977262 { public class Human15977262 {
public static String appendByteToString(String
originalString, byte byteToAppend) { public sta_tic String_byteToString(byte someByte,
originalString += Byte.toString(byteToAppend); String someString) {
return originalString; return someString + Byte.toString(someByte);
} }
} }
@ APizator Generated API (Post 15977262) © Code2API Generated API (Post 36568643)
. public class Code2API36568643 {
public class APIzator15977262 { b1i tatic Stri teNumberS (int
public static void appendByte(String someString, e S ring createfumberSequencelin

length) {
StringBuilder sb = new StringBuilder();
for (int i=0; i<length; i++) {

byte someByte)
throws Exception {

someString += Byte.toString(someByte); sb.append(i);
3} i return sb.toString();
}
}
@ Human Generated API (Post 36568643) @ APIzator Generated API (Post 36568643)
public class Human36568643 {

public class APIzator36568643 {
public static String createSequence() throws
Exception {
StringBuilder sb = new StringBuilder ();
for (imt i = 0; i < 1000; i++) {
sb.append (i) ;

public static String numberSequence () {
StringBuilder sb = new StringBuilder();
for (imt i = 0; i < 1000; i++) {
sb.append (i) ;

return sb.toString();

¥
} T

return sb.toString();

© Code2API Generated API (Post 473309) @ Human Generated API (Post 473309)

public class Code2API473309 { public class Human473309 {
public static String leftPadWithZeros(int number, public static String getStringFormatting(double
int length) { yournumber) {

return String.format("%0" + length + "d", number)

N return String.format("%05d", yournumber);
}
¥ ¥
@ APlzator Generated API (Post 473309) © Code2API Generated API (Post)
public class Code2API18828505 {
public class APIzator473309 { public static int getMinMaxValue(int[] convertedValues) {
public static void padInteger (int yournumber) int max = convertedValues[0];
1 for (int i = 1; i < convertedValues.length; i++) {
throws Exception { if (convertedValues[il] > max) {
String.format ("%05d", yournumber); max = convertedValues[il;
X
} ¥
}

return max;

¥

1

@ Human Generated API (Post) @ APIzator Generated API (Post)

public class Human18828505 { public class APIzator18828505 {
public static int getMax(int[] convertedValues) { public static void getValue(int[] convertedValues)
int max = convertedValues[0]; throws Exception {

for (imt i = 1; i < convertedValues.length; i++) {

int max = convertedValues [0];
if (convertedValues[i] > max) { for (int i = 1; i < convertedValues.length; i++) {
max = convertedValues[il; if (convertedValues[i] > max) {
¥ max = convertedValues[il;
} ¥
return max; b3
}

b
} b3

Fig. 6. APl Examples Generated by Different Methods

model’s maximum input token limit. (3) Missing important information in method names (3 cases).
Three method names generated by ConpeE2API are considered overly abstract and/or drop valuable

information. One possible solution is extracting important knowledge (such as keywords or terms)
from posts and code for prompt construction.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

104:16 Yubo Mai, Zhipeng Gao, Xing Hu, Lingfeng Bao, Yu Liu, and JianLing Sun

Table 4. Performance Comparison of Different Prompts.

Prompt M-Acc P-Acc R-Acc PR-Acc
w/o few-shot 22.5% 36.0% 55.0% 68.5%
w/o CoT 30.5% 41.0% 53.5% 64.0%
w/o both 6.5% 8.0% 10.5% 12.0%

CoDpE2API 43.5% 65.0% 66.0% 86.5%

4.3 RQ-3: Ablation Analysis

4.3.1 Experimental Setup. There are two key strategies we use in constructing our prompts, i.e.,
Chain-of-Thought (CoT) reasoning and few-shot learning. In this research question, we conduct
an ablation analysis to verify their effectiveness one by one. Specifically, we compare CopDE2API
with three of its incomplete versions: (i) Drop few-shot: we do not use few-shot learning when
constructing prompts; (ii) Drop CoT: we do not use Chain-of-Thought when constructing prompts;
(iii) Drop both: we drop both few-shot learning and CoT when constructing prompts. We reuse the
evaluation metrics described in RQ-1 for comparison purposes.

4.3.2 Evaluation Results. The evaluation results are shown in Table 4. It can be seen that: (1) No
matter which prompt strategy we dropped, it hurts the overall performance of our model. This
verifies the importance and necessity of adding few-shot learning and chain-of-thought
reasoning into our prompt engineering. (2) Compared with Dop few-shot, Drop CoT has a better
performance on P-Acc. While Drop few-shot has a better performance on R-Acc as compared
with Drop CoT. This signals that few-shot learning and chain-of-thought reasoning can
complement and enhance the performance of each other in generating reusable APIs. (3)
After removing both, the performance of CopE2API drops sharply, which is much lower than the
original APIzator. This suggests that solely using LLMs is unable to solve the APIzation problem,
designing prompts that suit the specific task is the key of applying LLMs. This further
confirms the effectiveness of few-shot learning and CoT reasoning to elicit human knowledge and
logical reasoning from LLMs to accomplish APIzation in a manner similar to a developer.

4.4 RQ-4: Generalization Study

4.4.1 Experimental Setup. As mentioned in Introduction 1, another limitation of APIzator is that it
is heavily designed and too complex to generalize to other programming languages. Compared with
APIzator, our proposed CoDE2AP] is based on prompt engineering, which is extremely lightweight
and flexible. In this research question, we aim to investigate the generalizability of our approach. In
particular, we want to evaluate whether our approach can be easily adapted to Python and achieve
a comparable performance with Java.

To perform this generalization study, we collected 5000 appropriate code snippets from SO
Python posts following the data collection process of APIzator (e.g., choosing “how to” questions,
accepted answers with a score of at least 2, posts with exactly one code snippet, SO pages views
in top 20,000). We then selected the top 100 Python code snippets (based on SO page views) and
manually crafted APIs for these code snippets as our ground truth. After that, we slightly modified
our chain-of-thought reasoning and few-shot learning from handling Java code snippets to Python
code snippets (e.g., python functions do not need to be enclosed within a class, details can be
found in our replication package [8]). Finally, we apply our framework to the Top 100 Python code
snippets and generate reusable APIs for these SO posts. We used the same evaluation metrics in
RQ-1 and compared its performance with Java evaluation results.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

Are Human Rules Necessary? Generating Reusable APIs with CoT Reasoning and In-Context Learning 104:17

Table 5. Performance Comparison of Different Programming Language

Language M-Acc P-Acc R-Acc PR-Acc

Java 43.5% 65.0% 66.0% 86.5%
Python 57.0% 69.0% 80.0% 92.0%

4.4.2 Evaluation Results. The evaluation results of our framework on the Python dataset are shown
in Table 5. We provide Java performance here for comparison. From the table, it can be seen that
after translating prompts from Java to Python, our framework achieves a better performance
regarding all evaluation metrics. A possible reason is that Python variables don’t need to declare the
data type explicitly, it is thus easier for CODE2API to infer Python method parameters and return
statements. The consistently good performance of Code2API on Python dataset confirms
that our framework can be easily generalized to other programming languages without
any performance loss.

4.5 RQ-5: Compilation Rate Analysis

4.5.1 Experimental Setup. Generating compilable APIs is crucial for developers to reuse APIs in
their daily development. In this research question, we aim to investigate the compilation ratio
of APIs generated by our approach and other baselines on the same evaluation dataset of RQ-
1. In particular, we compare CopE2API with the following three approaches: (1) Original Code
Snippet: for a given code snippet, we directly run it to see if it is compilable; (2) PostFinder [41]: the
component of PostFinder can wrap a code snippet into a compilable code, which can be regarded
as a baseline for this research question. For a given code snippet, we wrap it with PostFinder and
test if it is compilable; (3) APIzator: for comparison, we calculate the compilation ratio of APIs
generated by APIzator.

Table 6. Compilation Rate Analysis

Method Original Code Snippet PostFinder APIzator CobE2API

Compilation Rate 14.5% 46.5% 99.5% 95%

4.5.2 Experimental Results. The experimental results are shown in Table 6, it can be seen that:
(1) The compilation rate of original code snippets is only 14.5%, which further confirms that code
snippets on SO are not able to be reused directly. (2) Compared with APIzator and Cope2AP]I,
PostFinder achieves the worst performance due to its simple fixing strategy of using text matching.
(3) APIzator achieves the highest compilation rate (e.g., 99.5%) because of its use of existing tools
(CSNIPPEX/BAKER) for fixing compilation errors. However, the meaningless method names greatly
hinder the usage of APIzator’s APIs. (4) 95% APIs generated by Cope2API can be successfully com-
piled. It’s worth mentioning that if we feed the compilation error message to LLMs for regeneration,
CoDpE2API can ultimately resolve all the compilation errors, further verifying the practical and
potential usage of our tool. In general, CopDE2API does not rely on specific compilation error fixing
tools (like CSNIPPEX/BAKER) and is highly effective for generating compilable and reusable APIs.
Moreover, it has the potential to solve different types of compilation errors by interacting with
LLMs for multiple rounds.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

104:18 Yubo Mai, Zhipeng Gao, Xing Hu, Lingfeng Bao, Yu Liu, and JianLing Sun

5 PRACTICAL APPLICATION

Regarding the time efficiency, for the 200 code snippets of the Java evaluation dataset, the average
time cost of running our approach is 10 seconds per code snippet, which is comparable to APIzator
execution time (8s for each code snippet). As reported by Terragni et al. [52], developers need 4min
and 22s on average to perform a single APIzation. Considering the remarkable performance of our
CoDE2API in generating reusable APIs is comparable with human developers and the generation
time cost with our approach is efficient, we have implemented our ConpE2API as a Chrome exten-
sion [7], which can facilitate developers in using our approach for daily development when reusing
SO code snippets and inspire follow up research for this.

[JeX] How to split a double number X | 4 v

& > C & stackoverflow.com/questions/24753177/how-to-split-a-double-number-by-dot-into-two-decimal-numbers-in-java/247 24. 0 % # O @ :

stackoverflow About Products ForTeams | Q Search -
Code2API Code2API Chrome Extension
language: Java

Home 11 Answers Sorted by: | Highest score (default) | answer-id: answer-24753336
API:

. public class Code2API24753336 {
PUBLIC a Youcantry this way too p 0 s eByDot (double number) {
0f (number) . spLit("\\.");
® Questions
intAr
Tags 16 double val=1.9; intArr[1]
9 String[] arr=String.valueOf(val).split("\\."); return intArr;
- int[] intArr=new int[2]; b
Users intArr[0]=Integer.parselnt(arr(0]); // 1 !
intArr[1]=Integer.parseInt(arr(1l); // 9

Companies Reusable API Generated By Code2API

COLLECTIVES L v Share Follow

edited Jul 15,2014 at 907 answere d Jul 15, 2

Fig. 7. The Overview of Our Chrome Extension

Tool Implementation. We developed a Chrome extension, CopE2AP]I, to help developers auto-
matically convert a SO code snippet into a reusable API. CoDE2API consists of two components: a
frontend part (running on the user’s browser) responsible for fetching the code snippet on SO and
displaying the generated API, and a backend part (using GPT-3.5-turbo) responsible for generating
the reusable API with our prompt engineering. Once the SO page is loaded, the frontend will
prompt the user to click on the code snippet they are interested in. It will then call the backend
model to construct the prompt and use GPT-3.5-turbo to generate the reusable API. Finally, the
frontend alters the page to present the result to the user. The tool overview is shown in Fig. 7.

Practical Value. For experienced developers, our tool can greatly improve their efficiency in
reusing code snippets (10 seconds per API, 26 times faster than humans). It can also serve as
an API design tool for novice developers, who can learn recommended practices by examining
the generated outputs. Moreover, CopE2API has the potential to benefit development teams by
standardizing the way code is reused from SO, fostering better collaboration and code quality. We
will continue to optimize our tool and extend it to other programming languages in the future.

6 RELATED WORK
6.1 Code Generation

Code generation [6, 14, 15, 25, 31, 63, 69] is a significant topic in software engineering research,
the goal of this task is to transform a given natural language description into its corresponding
code implementations. With the emergence of the code pre-training model CodeBERT [14], more
and more work attempts to solve the code generation task using the large pre-trained models. For
example, Clement et al. [6] proposed PYMTS5 to complete the task of converting Python methods
and method document strings. Lu et al. [31] proposed CodeGPT to generate member functions
and member variables in Java classes. Unlike the existing code generation research, the input

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

Are Human Rules Necessary? Generating Reusable APIs with CoT Reasoning and In-Context Learning 104:19

of APIzation task is the SO code snippet, while the expected output is the reusable APIs of the
code snippet. Our model considers the code snippet and its context (e.g., post title, post body) for
generating reusable APIs for developers.

6.2 SO Mining and API Calls Generation

Stack Overflow, one of the world’s largest programmer Q&A communities, has accumulated a vast
number of technical questions and answers. Currently, many studies have been conducted on SO,
including post recommendation [18, 20, 38, 41], query reformulation [3, 17, 19], and content quality
analysis [66]. Specifically, Prompter [38] and PostFinder [41] utilize the code context within the IDE
to search for relevant posts on SO. BIKER [23] used the word embedding techniques to bridge the
gap between natural language description and API documentation. FOCUS [33] is a recommender
system to provide developers with suitable API function calls and code snippets. DeepAns [18]
uses weakly supervised learning to recommend the best answer for a given SO question. Cao et
al. [3] implemented automatic query reformulation using query log data from SO. Zhang et al. [66]
conducted an empirical study confirming that many answers on SO are obsolete. Different from
the above studies, CODE2API aims at transforming SO code snippets into reusable APIs by using
LLMs with chain-of-thought reasoning and few-shot learning. The high quality APIs generated by
our tool can further facilitate other relevant research.

Another task related to code APIzation is the generation of API calls [21, 23, 33, 36, 56, 60, 67],
which aims to help developers search or generate suitable API calls. The goal of this task is to
generate a call to an existing API (i.e., the method name and corresponding parameter list) based
on a natural language description. In recent years, Wei et al. [60] proposed CLEAR, which can
recommend reasonable API calls without parameter lists from SO to users based on their questions.
Wang et at. [56] and Patil et al. [36] used generative models to generate API calls from natural
language descriptions respectively. Unlike them, our task is to generate reusable APIs, which not
only need to generate the method name and parameter list, but also the corresponding method
body, making it complicated and challenging task.

6.3 Large Language Models for Software Engineering

LLMs [5, 44, 54, 55, 57, 58, 62, 68] are increasingly used in software engineering, showing great
potential in various tasks. They can be applied through two main methods: fine-tuning and prompt
engineering. Fine-tuning adapts LLMs to specific tasks. For example, Codex [4] fine-tuned GPT3 [2]
to generate Python functions. Thapa et al. [53] fine-tuned models like Bert [10] and GPT2 [39]
to solve software vulnerability detection tasks. However, fine-tuning requires high-performance
hardware devices, which is expensive and costly for developers with limited computing resources.
Prompt engineering, on the other hand, uses tailored prompts to leverage LLMs for tasks such as
program repair [24, 37], code generation [12, 47], and test case generation [43, 61], without the
need for costly hardware. Recently, Bareiss et al. [1] designed specific prompts to solve tasks such
as test case generation. Li et al. [28] proposed CodelE and designed corresponding prompts to solve
information retrieval tasks. To the best of our knowledge, CopE2API is the first model to use LLMs
with prompt engineering to guide LLMs to solve the APIzation task.

7 THREATS TO VALIDITY

Several threats to validity are related to our research:

Threats to internal validity. One threat to internal validity is that the design of prompts can
be diverse. For instance, the selection of examples in few-shot learning and the choice of CoTs
in chain-of-thought reasoning can both influence model results. While our current prompt may
not necessarily be optimal, they have already performed well in the code APIzation task. In the

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

104:20 Yubo Mai, Zhipeng Gao, Xing Hu, Lingfeng Bao, Yu Liu, and JianLing Sun

future, we will investigate methods to automatically design high-quality prompts for accomplishing
corresponding tasks. Another threat is the instability of ChatGPT’s output. To reduce the uncertainty
of the model’s output, we set the corresponding temperature parameter to 0. Nevertheless, the
model still has slight instability, which is determined by the implementation of ChatGPT.
Threats to external validity. One threat to external validity is that Code2API is unable to
generate APIs for very long Stack Overflow posts, as Chatgpt has a maximum input length of 4096
tokens. Considering Chatgpt’s support for conversational Q&A, one potential solution is to employ
multiple-round questioning to extract summaries of the question-answer posts to reduce their
length. These extracted summaries can then be used to replace the original question-answer posts
for the APIzation task. Another threat is the selection of the evaluation dataset. In this paper, we
use the evaluation set from Terragni et al. [52] to ensure the fairness of the comparison.

Threats to construct validity. One threat to construct validity is the subjectivity and personal
bias in the human evaluation process. The preliminary study conducted by the first author has a
certain degree of subjectivity. To reduce the subjectivity and personal bias in the manual annotation
process, we performed a comprehensive user study in RQ-2 with 18 experienced Java developers.
The evaluation results are consistent with our preliminary study and the Cohen’s kappa coefficient
between different evaluation groups further verifies the advantage of our approach.

8 CONCLUSION AND IMPLICATIONS

This paper aims to automatically solve the APIzation task to facilitate developers in reusing code
snippets. To address this task, we employ chain-of-thought reasoning and few-shot in-context
learning to guide the LLM to gradually generate a reusable APl in a developer-like manner. Extensive
evaluations have proven the effectiveness of our approach, and its promising performance and
efficiency have led us to develop a practical Google extension to display the corresponding APIs of
code snippets when developers browse SO pages, making it easier for them to reuse code snippets.
Implications. We propose Cope2API for automatically generating reusable APIs for SO code
snippets with CoT reasoning and few-shot learning. We believe that the implications of CopE2API
extend far beyond performance gains. (1) For software engineering researchers, CODE2API proposes
a novel way of generating real reusable APIs with LLMs, exploiting the possibilities of using LLMs
on a new software engineering task. (2) For developers, CoDE2API provides a Chrome extension
tool to help developers use SO code snippets more effectively and efficiently. (3) For SO organizers,
CoDE2API has generated two high-quality API datasets and provides a better way to manage these
diverse code snippets. Moreover, CODE2API can be easily extended to other programming languages.
In future work, we plan to make high-quality datasets for the APIzation task and fine-tune code
LLMs (e.g., CodeLlama [40]) to further enhance the model performance.

ACKNOWLEDGMENTS

This research is supported by the Starry Night Science Fund of Zhejiang University Shanghai
Institute for Advanced Study, Grant No. SN-ZJU-SIAS-001. This research is supported by the National
Key Research and Development Program of China (No. 2021YFB2701102). This research is partially
supported by the Shanghai Sailing Program (23YF1446900) and the National Science Foundation of
China (No. 62202341, No0.62372398, No.72342025, and U20A20173), and the Fundamental Research
Funds for the Central Universities (No. 226-2022-00064). This research is partially supported by
the Ningbo Natural Science Foundation (No. 2023J292). This research was also supported by
the advanced computing resources provided by the Supercomputing Center of Hangzhou City
University. The authors would like to thank the reviewers for their insightful and constructive

feedback.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

Are Human Rules Necessary? Generating Reusable APIs with CoT Reasoning and In-Context Learning 104:21

REFERENCES

(1]
(2]

[7
(8]
[9]

—

[10]
[11]
[12]
[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

Patrick Bareif3, Beatriz Souza, Marcelo d’Amorim, and Michael Pradel. 2022. Code generation tools (almost) for free? a
study of few-shot, pre-trained language models on code. arXiv preprint arXiv:2206.01335 (2022).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

Kaibo Cao, Chunyang Chen, Sebastian Baltes, Christoph Treude, and Xiang Chen. 2021. Automated query reformulation
for efficient search based on query logs from stack overflow. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 1273-1285.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,
Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374 (2021).

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,
Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311 (2022).

Colin B Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and Neel Sundaresan. 2020. PyMT5:
multi-mode translation of natural language and Python code with transformers. arXiv preprint arXiv:2010.03150 (2020).
Code2API. 2023. Our chrome extension tutorial. https://youtu.be/ AHOPEWDEKCE

Code2APL 2023. Our replicate package. https://doi.org/10.6084/m9.figshare.24219856.v1

Jacob Cohen. 1968. Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit.
Psychological bulletin 70, 4 (1968), 213.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and Zhifang Sui. 2022.
A survey for in-context learning. arXiv preprint arXiv:2301.00234 (2022).

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2023. Self-collaboration Code Generation via ChatGPT. arXiv preprint
arXiv:2304.07590 (2023).

Sidong Feng and Chunyang Chen. 2023. Prompting Is All Your Need: Automated Android Bug Replay with Large
Language Models. arXiv preprint arXiv:2306.01987 (2023).

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,
Daxin Jiang, et al. 2020. Codebert: A pre-trained model for programming and natural languages. arXiv preprint
arXiv:2002.08155 (2020).

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih, Luke
Zettlemoyer, and Mike Lewis. 2022. Incoder: A generative model for code infilling and synthesis. arXiv preprint
arXiv:2204.05999 (2022).

Tianyu Gao, Adam Fisch, and Dangi Chen. 2020. Making pre-trained language models better few-shot learners. arXiv
preprint arXiv:2012.15723 (2020).

Zhipeng Gao, Xin Xia, John Grundy, David Lo, and Yuan-Fang Li. 2020. Generating question titles for stack overflow
from mined code snippets. ACM Transactions on Software Engineering and Methodology (TOSEM) 29, 4 (2020), 1-37.
Zhipeng Gao, Xin Xia, David Lo, and John Grundy. 2020. Technical Q8A Site Answer Recommendation via Question
Boosting. ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 1 (2020), 1-34.

Zhipeng Gao, Xin Xia, David Lo, John Grundy, and Yuan-Fang Li. 2021. Code2que: A tool for improving question
titles from mined code snippets in stack overflow. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. 1525-1529.

Zhipeng Gao, Xin Xia, David Lo, John Grundy, Xindong Zhang, and Zhenchang Xing. 2023. I know what you are
searching for: Code snippet recommendation from stack overflow posts. ACM Transactions on Software Engineering
and Methodology 32, 3 (2023), 1-42.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep API learning. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. 631-642.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas Raunak, Mohamed Gabr, Hitokazu Matsushita, Young Jin Kim,
Mohamed Afify, and Hany Hassan Awadalla. 2023. How good are gpt models at machine translation? a comprehensive
evaluation. arXiv preprint arXiv:2302.09210 (2023).

Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API method recommendation without
worrying about the task-API knowledge gap. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. 293-304.

Qing Huang, Jiahui Zhu, Zhenchang Xing, Huan Jin, Changjing Wang, and Xiwei Xu. 2023. A Chain of Al-based
Solutions for Resolving FQNs and Fixing Syntax Errors in Partial Code. arXiv preprint arXiv:2306.11981 (2023).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

https://youtu.be/AHOPEWDEkCE
https://doi.org/10.6084/m9.figshare.24219856.v1

104:22 Yubo Mai, Zhipeng Gao, Xing Hu, Lingfeng Bao, Yu Liu, and JianLing Sun

[25]
[26]

[27

—

[28]

[29]

[30]

[31]

[32]

[33

—

[34
[35

—_

[36

—

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]
[46]
[47]

[48]

Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023. SelfEvolve: A Code Evolution Framework via Large Language
Models. arXiv preprint arXiv:2306.02907 (2023).

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large language models
are zero-shot reasoners. Advances in neural information processing systems 35 (2022), 22199-22213.

J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement for categorical data. biometrics
(1977), 159-174.

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuanbin Wu, Xuanjing Huang, and Xipeng Qiu. 2023. CodelE: Large
Code Generation Models are Better Few-Shot Information Extractors. arXiv preprint arXiv:2305.05711 (2023).
Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2023. Pre-train, prompt,
and predict: A systematic survey of prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),
1-35.

Renze Lou, Kai Zhang, and Wenpeng Yin. 2023. Is prompt all you need? no. A comprehensive and broader view of
instruction learning. arXiv preprint arXiv:2303.10475 (2023).

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn Drain,
Daxin Jiang, Duyu Tang, et al. 2021. Codexglue: A machine learning benchmark dataset for code understanding and
generation. arXiv preprint arXiv:2102.04664 (2021).

Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What makes a good code example?: A
study of programming Q&A in StackOverflow. In 2012 28th IEEE International Conference on Software Maintenance
(ICSM). IEEE, 25-34.

Phuong T Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa, Thomas Degueule, and Massimiliano Di Penta. 2019.
Focus: A recommender system for mining api function calls and usage patterns. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 1050-1060.

OpenAl 2022. Introducing ChatGPT. OpenAI Blog (November 2022).

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems 35 (2022), 27730-27744.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. 2023. Gorilla: Large language model connected
with massive apis. arXiv preprint arXiv:2305.15334 (2023).

Rishov Paul, Md Mohib Hossain, Mohammed Latif Siddiq, Masum Hasan, Anindya Igbal, and Joanna CS Santos. [n.d.].
Enhancing Automated Program Repair through Fine-tuning and Prompt Engineering. ([n. d.]).

Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele Lanza. 2014. Mining stackoverflow
to turn the ide into a self-confident programming prompter. In Proceedings of the 11th working conference on mining
software repositories. 102-111.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language models are
unsupervised multitask learners. OpenAlI blog 1, 8 (2019), 9.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal
Remez, Jérémy Rapin, et al. 2023. Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950
(2023).

Riccardo Rubei, Claudio Di Sipio, Phuong T Nguyen, Juri Di Rocco, and Davide Di Ruscio. 2020. PostFinder: Mining
Stack Overflow posts to support software developers. Information and Software Technology 127 (2020), 106367.

Rosie Shier. 2004. Statistics: 2.3 The Mann-Whitney U Test. Mathematics Learning Support Centre. Last accessed 15
(2004), 2013.

Mohammed Latif Siddiq, Joanna Santos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid Al Rifat, and Vinicius Car-
valho Lopes. 2023. Exploring the Effectiveness of Large Language Models in Generating Unit Tests. arXiv preprint
arXiv:2305.00418 (2023).

Yangi Su, Zheming Han, Zhipeng Gao, Zhenchang Xing, Qinghua Lu, and Xiwei Xu. 2023. Still confusing for bug-
component triaging? deep feature learning and ensemble setting to rescue. In 2023 IEEE/ACM 31st International
Conference on Program Comprehension (ICPC). IEEE, 316-327.

Siddharth Subramanian and Reid Holmes. 2013. Making sense of online code snippets. In 2013 10th Working Conference
on Mining Software Repositories (MSR). IEEE, 85-88.

Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API documentation. In Proceedings of the
36th international conference on software engineering. 643—652.

Chee Wei Tan, Shangxin Guo, Man Fai Wong, and Ching Nam Hang. 2023. Copilot for Xcode: Exploring Al-Assisted
Programming by Prompting Cloud-based Large Language Models. arXiv preprint arXiv:2307.14349 (2023).

Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /* iComment: Bugs or bad comments?*. In Proceedings
of twenty-first ACM SIGOPS symposium on Operating systems principles. 145-158.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

Are Human Rules Necessary? Generating Reusable APIs with CoT Reasoning and In-Context Learning 104:23

[49]

[50]

[51]
[52]

[53

—

[54]

[55]

[56]

[57]
[58]

[59]

[60]
[61]

[62]

[63]

[64]
[65]
[66]
[67]
[68]

[69]

Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. 2011. aComment: mining annotations from comments and code to
detect interrupt related concurrency bugs. In 2011 33rd International Conference on Software Engineering (ICSE). IEEE,
11-20.

Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T Leavens. 2012. @ tcomment: Testing javadoc comments to
detect comment-code inconsistencies. In 2012 IEEE Fifth International Conference on Software Testing, Verification and
Validation. IEEE, 260-269.

Valerio Terragni, Yepang Liu, and Shing-Chi Cheung. 2016. CSNIPPEX: automated synthesis of compilable code
snippets from Q&A sites. In Proceedings of the 25th international symposium on software testing and analysis. 118—129.
Valerio Terragni and Pasquale Salza. 2021. APIzation: Generating reusable APIs from StackOverflow code snippets. In
2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 542-554.

Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit Camtepe, Josef Pieprzyk, and Surya Nepal. 2022.
Transformer-based language models for software vulnerability detection. In Proceedings of the 38th Annual Computer
Security Applications Conference. 481-496.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Roziére, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971 (2023).

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. 2023. Software Testing with
Large Language Model: Survey, Landscape, and Vision. arXiv preprint arXiv:2307.07221 (2023).

Shufan Wang, Sebastien Jean, Sailik Sengupta, James Gung, Nikolaos Pappas, and Yi Zhang. 2023. Measuring and
Mitigating Constraint Violations of In-Context Learning for Utterance-to-API Semantic Parsing. arXiv preprint
arXiv:2305.15338 (2023).

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and Hannaneh Hajishirzi.
2022. Self-instruct: Aligning language model with self generated instructions. arXiv preprint arXiv:2212.10560 (2022).
Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-aware unified pre-trained encoder-
decoder models for code understanding and generation. arXiv preprint arXiv:2109.00859 (2021).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022.
Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information Processing
Systems 35 (2022), 24824-24837.

Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie Wang, and Song Wang. 2022. Clear: contrastive learning for
api recommendation. In Proceedings of the 44th International Conference on Software Engineering. 376-387.

Zhuokui Xie, Yinghao Chen, Chen Zhi, Shuiguang Deng, and Jianwei Yin. 2023. ChatUniTest: a ChatGPT-based
automated unit test generation tool. arXiv preprint arXiv:2305.04764 (2023).

Zhipeng Xue, Zhipeng Gao, Xing Hu, and Shanping Li. 2023. ACWRecommender: A Tool for Validating Actionable
Warnings with Weak Supervision. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1876-1880.

Dapeng Yan, Zhipeng Gao, and Zhiming Liu. 2023. A Closer Look at Different Difficulty Levels Code Generation
Abilities of ChatGPT. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE,
1887-1898.

Di Yang, Aftab Hussain, and Cristina Videira Lopes. 2016. From query to usable code: an analysis of stack overflow
code snippets. In Proceedings of the 13th International Conference on Mining Software Repositories. 391-402.

Xianjun Yang, Yan Li, Xinlu Zhang, Haifeng Chen, and Wei Cheng. 2023. Exploring the limits of chatgpt for query or
aspect-based text summarization. arXiv preprint arXiv:2302.08081 (2023).

Haoxiang Zhang, Shaowei Wang, Tse-Hsun Chen, Ying Zou, and Ahmed E Hassan. 2019. An empirical study of
obsolete answers on stack overflow. IEEE Transactions on Software Engineering 47, 4 (2019), 850-862.

Kechi Zhang, Ge Li, Jia Li, Zhuo Li, and Zhi Jin. 2023. ToolCoder: Teach Code Generation Models to use APIs with
search tools. arXiv preprint arXiv:2305.04032 (2023).

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen Zhang, Junjie
Zhang, Zican Dong, et al. 2023. A survey of large language models. arXiv preprint arXiv:2303.18223 (2023).

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang, Yang Li,
et al. 2023. Codegeex: A pre-trained model for code generation with multilingual evaluations on humaneval-x. arXiv
preprint arXiv:2303.17568 (2023).

Received 2023-09-28; accepted 2024-04-16

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 104. Publication date: July 2024.

	Abstract
	1 INTRODUCTION
	2 Preliminary Study
	2.1 Limitations of APIzator
	2.2 Motivating Examples

	3 OUR APPROACH
	3.1 Data Preparing
	3.2 Prompt Engineering
	3.3 The Implementation of the LLM

	4 Empirical Evaluation
	4.1 RQ-1: Method Parameters and Return Statements Evaluation
	4.2 RQ-2: Method Name Quality and API Preference Evaluation
	4.3 RQ-3: Ablation Analysis
	4.4 RQ-4: Generalization Study
	4.5 RQ-5: Compilation Rate Analysis

	5 Practical Application
	6 Related Work
	6.1 Code Generation
	6.2 SO Mining and API Calls Generation
	6.3 Large Language Models for Software Engineering

	7 Threats to Validity
	8 Conclusion and Implications
	Acknowledgments
	References

