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ABSTRACT
Stack Overflow is one of the most popular technical Q&A sites
used by software developers. Seeking help from Stack Overflow
has become an essential part of software developers’ daily work for
solving programming-related questions. Although the Stack Over-
flow community has provided quality assurance guidelines to help
users write better questions, we observed that a significant number
of questions submitted to Stack Overflow are of low quality. In this
paper, we introduce a new web-based tool, Code2Que, which can
help developers in writing higher quality questions for a given code
snippet. To evaluate Code2Que, we first sampled 50 low quality
⟨code snippet, question⟩ pairs from the Python and Java datasets on
Stack Overflow. Then we conducted a user study to evaluate the
question titles generated by our approach as compared to human-
written ones using three metrics: Clearness, Fitness and Willingness
to Respond. Our experimental results show that for a large number
of low-quality questions in Stack Overflow, Code2Que can improve
the question titles in terms of Clearness, Fitness and Willingness
measures. Code2Que can be accessed at http://www.code2que.com.
A demo video of Code2Que is at https://youtu.be/orG--uXKnkU.
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1 INTRODUCTION
In recent years, Stack Overflow (SO) has become one of the most
common ways that developers seek programming problem-related
answers on the web. Millions of developers now use Stack Overflow
to search for high-quality posts to solve their daily work problems.
The success of Stack Overflow and community-based question and
answer sites in general rely heavily on the will of community mem-
bers to answer other’s questions. Intuitively, a well-phrased ques-
tion is more likely to obtain attention from potential experts, thus
increasing the likelihood of receiving useful help and support. In
contrast, poorly asked questions may discourage potential helpers
and are less likely to receive useful answers, or indeed any answer
at all.

Even though Stack Overflow has provided detailed guidelines
to help community members post well-written questions, a large
number of questions submitted to Stack Overflow are of low quality.
These poorly asked questions are, more often than not, ambiguous,
vague, and/or incomplete. It is thus very hard to attract potential
experts to provide useful answers, which may discourage the askers
and hinder the progress of knowledge sharing. Many prior works
have investigated the issue of question quality on question answer-
ing community [1, 6, 10, 18, 21]. Correa and Sureka [6] investigated
closed questions on Stack Overflow, which suggests that a good
question should contain enough code for others to reproduce the
problem. Arora et al. [1] proposed a novel method for improving
the question quality prediction accuracy by making use of content
extracted from previously asked similar questions in the forum.
More recent work [21] studied approaches to identifying unclear
questions in CQA websites. However, all of these previous works
focus on identifying the low-quality questions or how to increase
the accuracy of the prediction, more in-depth research of improving
the low-quality questions is still needed.

Based on our previous work [9], we present a web-based tool,
named Code2Que, that helps developers post higher-quality ques-
tions on Stack Overflow. Developers can copy and paste their code
snippets into our web application, then Code2Que helps develop-
ers to improve their posts by generating question titles as well as
recommending related questions. The input to Code2Que is a code
snippet, which is regarded as an ordered sequence of code tokens by
our tool. Code2Que consists of an offline learning phase and an on-
line recommendation phase. The output of Code2Que is two parts:
(i) Generated Questions: Code2Que will generate a high-quality
question title for a given code snippet based on our deep sequence-
to-sequence model. Developers can utilize the generated questions
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Figure 1: Overview of Our Approach

for reformulating their posts. (ii) Retrieved Questions: Code2Que
first embeds the code snippet into a vector, then searches through
our codebase to retrieve relevant questions with similar problematic
code snippets. Code2Que is able to benefit the following tasks: (i)
Question Improvement. Our approach can help novice developers
to create clear and informative question titles. To the best of our
knowledge, our work is the very first to investigate the possibility
of automatically improving low-quality questions in Stack Over-
flow. (ii) Code Embeddings. Our approach can embed code snippets
into a fixed dimensional vector space, and with this a variety of
applications such as code search (e.g. [4, 12, 19]), clone detection
(e.g. [7, 8, 17]) and code summarization (e.g. [13–15]). can benefit
from the code embeddings used in our study.

The rest of the paper is organized as follows. Section 2 presents
the details of our Code2Que approach. Section 3 introduces the
implementation details of Code2Que and its key usage scenarios.
Section 4 shows the experimental results of our evaluation. Section 5
summarises our work.

2 APPROACH
2.1 Overview
Fig. 1 illustrates the overall framework of Code2Que. For a given
code snippet, Code2Que assists developers in writing high-quality
questions by automatically generating question titles and retrieving
the related questions in Stack Overflow. Our model contains two
phases: offline learning and online recommendation.

In the offline learning phase, we first collect ⟨code snippet, ques-
tion⟩ pairs from Stack Overflow posts. Since our goal is generating
high-quality questions to help developers, we remove all the pairs
in which the question score is less than 1. We train a deep sequence-
to-sequence (seq2seq) model to map a code snippet directly to a

high quality question title. Our offline learning model is divided
into two components: a Source-code Encoder and a Question
Decoder. The source code snippet is transformed by Source-code
Encoder into a vector representation, with the help of an attention
mechanism [2] to perform better content selection, a copy mecha-
nism [11] to handle the rare-words problem, as well as a coverage
mechanism [22] to avoid meaningless repetitions. The vector rep-
resentation of the code snippet is then read by a Question Decoder
to generate the target question titles.

In the online recommendation phase, for a given code snippet,
the recommendation output is a Generated Question and a set of
Retrieved Questions. The question title generated by the offline
learning model can assist developers in writing high-quality ques-
tions that are more informative and clear. The retrieved similar
questions can be used by developers to help them better under-
stand their problems.

2.2 Offline Learning
2.2.1 Source-Code Encoder. Our Source-code Encoder is a two-
layer bidirectional LSTM network. Tokens in the code snippet are
fed sequentially into the Source-code Encoder, which generates a
sequence of hidden states. For example, given 𝑥𝑡 is the input source
code token at time step 𝑡 , the Source-code Encoder will produce
the hidden states

−→
h𝑡 and

←−
h𝑡 at time step 𝑡 for the forward pass and

backward pass respectively. The hidden states from the forward
and backward pass of the last layer of the source-code encoder are
concatenated to form a state 𝑠 .

2.2.2 Question Decoder. Our Question Decoder is a single-layer
LSTM network, initialized with the state 𝑠 produced by the Source-
code Encoder. During training, at each time step 𝑡 , the Question
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Decoder takes as input the embedding vector 𝑦𝑡−1 of the previous
word and the previous state 𝑠𝑡−1, and concatenates them to produce
the input of the LSTM network. The output of the LSTM network
is regarded as the decoder hidden state 𝑠𝑡 . The Question Decoder
produces one symbol at a time and stops when the END symbol
is emitted. The only change with the Question Decoder at testing
time is that it uses output from the previous word, since there is no
access to a ground truth then.

2.2.3 Incorporating the AttentionMechanism. One challenging task
with the sequence-to-sequence model is dealing with the long se-
quence input. A solution was proposed by Bahdanau et al. [2], in
which they introduced a technique called “attention” which signifi-
cantly improved the performance of sequence-to-sequence models
in machine translation systems. We incorporate the attentionmech-
anism in our work and model the attention [2] distribution over
words in the source code snippets, which allows the model to focus
on the most relevant parts of the input sequence as needed.

2.2.4 Incorporating a Coverage Mechanism. Repetition is another
challenge for attentional sequence-to-sequencemodels, wheremean-
inglessly repeated words can be generated during the decoding
process. As shown in Figure 2, “post” has been repeated twice by
the attention model (highlighted with yellow color in Figure 2). To
address this problem, we incorporate a coverage mechanism [22] to
avoid meaningless repetitions. The coverage mechanism quantita-
tively emphasizes the coverage of sentence words and thus avoids
generating repetitive text while decoding.

2.2.5 Incorporating a Copy Mechanism. Generating question titles
from code snippets is a non-trivial task because the code snippets
usually contain tokens with very rare occurrences, such as the
word get_client_ip (highlighted with a blue color) in Figure 2. It
is very difficult, often impossible, for a decoder to generate such a
word solely based on language modeling. To address this challenge,
we incorporate a copy mechanism [11] which allows the model to
copy tokens from the source code snippet to the target generated
question title. To do this, we maintain a binary classifier 𝑝𝑐𝑔 to
determine whether to generate a word from the vocabulary or
to copy the word directly from the input code snippet based on
attention distribution. As shown in the last row in Figure 2, with
the help of the copy mechanism, the mohdel properly picks up the
method name get_client_ip from the source code snippet and
copies it into the generated question titles.

2.3 Online Recommendation
2.3.1 Generated Questions. Once the offline learning model is
trained, we do inference using a beam search on the pre-trained
model. For a given code snippet, the Source-code Encoder encodes
it into a fixed-dimensional real-valued vector, then the Question
Decoder reads the code embedding to infer the target question titles.
The inference process stops when the model generates the END
token which stands for the end of the sentence.

2.3.2 Retrieved Questions. To help developers better understand
their problems, we retrieve other relevant questions in Stack Over-
flow according to the code snippet. After the offline training phase,

Figure 2: Example of Generated Questions

each code snippet 𝑠𝑖 in the training corpus is mapped to a fixed-
dimensional vector 𝑐𝑖 of real values. By stacking all the individual
vectors together, we construct a source code snippet embedding
matrix𝐶𝑠×𝑑 , where the first dimension 𝑠 is the total number of code
snippets and the second dimension 𝑑 is the number of hidden states
of the Source-code Encoder. After the developer submits his/her
code snippet to our model, the code snippet is embedded into a
vector by the Source-code Encoder, then we search through the
code embedding matrix 𝐶𝑠×𝑑 to retrieve relevant questions with
similar code snippets.

3 IMPLEMENTATION DETAILS
We have implemented Code2Que as a standalone web-based tool
to assist developers in improving question titles in Stack Overflow.
The source code and data can be found in our Github repository[5].
Data Collection. The data source of Code2Que is from the Stack
Overflow data dump of September 2019[20]. We use the Python,
Java, Javascript, C# and SQL tags to collect questions associated
with the corresponding programming language. We extract the
code snippet from each post’s body by using ⟨code⟩ tags, and then
pair it with its question title if the question score is higher than
1. We have collected more than 1 million ⟨code snippet, question⟩
pairs from Stack Overflow for different programming languages.
Data Preprocessing. We preprocess our collected data according
to the following steps: We first tokenize the code snippet and ques-
tion title using the NLTK toolkit [3] (Step1). After that, to avoid
being overly context-specific, we use regular expressions to replace
numbers and strings with special tokens “NUMBER” and “STRING”
in code snippets (Step2). For question titles, we only keep the pairs
if one of the interrogative keywords (e.g., “how”, “what”, “why”,
“which”) appears in the question (Step3). Following that, we remove
pairs where the code snippet and the question title are too long or
too short. We set the token range from 16 tokens to 128 tokens for
code snippets and from 4 tokens to 16 tokens for question titles
respectively. The remaining ⟨code snippet, question⟩ pairs are added
to our training corpus.
BackendModel. We use the framework OpenNMT [16] to train our
backend Model. We followed our previous experiment settings [9]
for the training process. The collected ⟨question, code snippet⟩ pairs
are input into the workflow of our approach described in Section 2,
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Figure 3: Homepage of Code2Que

and the output consists of the trained sequence-to-sequence model
and the associated code embeddings which are used by Code2Que
as the backend model for online recommendation.
FrontendUser Interface. Fig. 3 shows the home page ofCode2Que.
Code2Que provides an input box for developers to submit their
source code snippet. After a developer submits his/her code snip-
pet to the server, the code snippet is preprocessed and passed to
our backend model. The outputs are organised into two separate
result boxes for the generated question and retrieved questions
respectively. For the generated question, Code2Que generates a
question title according to the code snippet. For retrieved questions,
Code2Que returns the top-5 most similar questions in our code
base together with the links to their Stack Overflow posts.
System Optimization. To meet the efficiency requirement as an
online web tool, we optimize the implementations of Code2Que: (i)
Considering that the offline learning model and code embeddings
are frequently used in the online recommendation phase, we put
them into cache to reduce redundant data loading. (ii) We created
an index for the relevant questions in our database to speed up
retrieval. (iii) We used locality sensitive hashing for fast nearest
neighbour search in our large code embeddings data sets.
User Scenarios. Fig. 3 demonstrates an example1 of using our tool
to improve the low quality question titles in Stack Overflow. The
original question title, i.e., “Python [] notation in list”, was unclear
and uninformative. When developer submits the code snippet to
our tool, the generated question title is “how to add an item to a
list”. The newly generated question title is much more clear and
also questioning on the key problems of the user’s concern. After
going through the generated question titles and relevant questions
retrieved by our approach, developers can gain a better understand-
ing of the key problem. As a result, developer can use our tool to

1https://stackoverflow.com/questions/12828968/python-notation-in-list

Table 1: Human Evaluation (Code2Que vs. Human)

Python / Java Win (%) Lose (%) Tie (%)
Clearness 52.4 / 42.8 33.2 / 34.0 14.4 / 23.2
Fitness 55.2 / 47.2 24.0 / 39.6 20.8 / 13.2

Willingness 61.2 / 49.2 31.6 / 26.8 7.2 / 24.0

reformulate their earlier poorly asked questions and write questions
more effectively.

4 EVALUATION AND USER STUDY
To evaluate whether Code2Que can generate better question ti-
tles for low-quality questions in Stack Overflow, we performed a
user study on our Python and Java datasets. We sampled 50 low-
quality ⟨question, code snippet⟩ pairs, which have been marked as
lacking clarity and/or need to be further improved upon. For each
code snippet, we conducted a pairwise comparison between two
question titles, the original title written by humans and the title
generated by our Code2Que. For each pairwise comparison, we
asked 5 evaluators to decide which one is better in terms of three
metrics: Clearness, Fitness, and Willingness; tie was allowed. Clear-
ness measures whether a question title is expressed in a clear way.
Fitness measures whether a question title is reasonable in logic with
the provided code snippet. Willingness measures whether a user is
willing to respond to a specific question.

Evaluation results are summarized in Table 1. We can see that: (i)
question titles generated by Code2Que outperform the low-quality
question titles for all metrics. This demonstrates that our approach
is able to produce clearer and/or more appropriate questions, in-
dicating the ability of Code2Que to improve low-quality Stack
Overflow questions. (ii) Code2Que question titles have better will-
ingness scores. This shows that our question titles are more likely to
elicit further interactions, and helpful to increase the likelihood of
receiving answers. (iii) Not all of the poor quality question titles can
be improved by our approach. Even though our question titles are
not perfect, our Code2Que is the first work on this direction. We
release our tool and dataset to inspire further follow-up research.

5 SUMMARY AND FUTUREWORK
We demonstrate Code2Que, a web-based tool for improving low-
quality question titles in Stack Overflow. Developers copy and
paste their code snippets into our web application. Code2Que
automatically generates question titles for the code snippets via
a deep sequence-to-sequence model. Human evaluation results
show that for a large number of low-quality questions in Stack
Overflow, Code2Que can improve the quality of the question titles
in terms of Clearness, Fitness, andWillingness. In future work, we
will design better models to generate question titles by considering
more context information.
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