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Abstract—During software development and maintenance, defect localization is an essential part of software quality assurance. Even

though different techniques have been proposed for defect localization, i.e., information retrieval (IR)-based techniques and spectrum-

based techniques, they can only work after the defect has been exposed, which can be too late and costly to adapt to the newly

introduced bugs in the daily development. There are also many JIT defect prediction tools that have been proposed to predict the buggy

commit. But these tools do not locate the suspicious buggy positions in the buggy commit. To assist developers to detect bugs in time

and avoid introducing them, just-in-time (JIT) bug localization techniques have been proposed, which is targeting to locate suspicious

buggy code after a change commit has been submitted. In this paper, we propose a novel JIT defect localization approach, named

DEEPDL (Deep Learning-based defect localization), to locate defect code lines within a defect introducing change. DEEPDL employs a

neural language model to capture the semantics of the code lines, in this way, the naturalness of each code line can be learned and

converted to a suspiciousness score. The core of our DEEPDL is a deep learning-based neural language model. We train the neural

language model with previous snapshots (history versions) of a project so that it can calculate the naturalness of a piece of code. In its

application, for a given new code change, DEEPDL automatically assigns a suspiciousness score to each code line and sorts these code

lines in descending order of this score. The code lines at the top of the list are considered as potential defect locations. Our tool can

assist developers efficiently check buggy lines at an early stage, which is able to reduce the risk of introducing bugs in time and improve

the developers’ confidence in the reliability of their software. We conducted an extensive experiment on 14 open source Java projects

with a total of 11,615 buggy changes. We evaluate the experimental results considering four evaluation metrics. The experimental

results show that our method outperforms the state-of-the-art by a substantial margin.

Index Terms—Defect localization, just-in-time, software naturalness, deep learning

Ç

1 INTRODUCTION

IN software development and maintenance, developers
often spend much effort and resources for program debug-

ging. For example, software debugging can cost 80% of the
total software cost for some software projects [1]. Neverthe-
less, identifying the locations of bugs has historically been a
manual task, which is considered to be time-consuming and
labor-intensive [2]. In this study, our research aims to help
developers to reduce the manual efforts regarding the soft-
ware debugging process. Two types of software engineering
tasks are relevant to our work: Just-In-Time (JIT) defect pre-
diction and fault localization. (i) Fault localization: this task
aims to help developers localize potential faulty code

elements (e.g., statements or methods) by analyzing various
dynamic execution information (e.g., failed/passed tests, bug
reports). Previous work investigated the fault localization
task by using information retrieval (IR) based techniques [3],
spectrum-based techniques [4], or learning based techniques
[5], [6]. However, one of the crucial disadvantages of these
fault localization techniques is that they heavily depend on
the dynamic execution information and only work after the
defect has been exposed, which can be too late and costly for
the newly introducing bugs. Besides, spectra-based techni-
ques require test cases that are often unavailable [7], [8], [9].
IR-based does not work until line level (usually only until
file/method level). (ii) JIT defect prediction task: for a given
commit, the JIT defect prediction tool aims to help developers
to check if the commit is a buggy commit. Although different
techniques have been proposed to predict the buggy commit
just-in-time [10], [11], these prior works do not locate the sus-
picious positions. Considering a submitted commit usually
involves dozens of changed files with hundreds of added
lines (e.g., according to our empirical study, the average num-
ber of added lines of a commit is 98), finding the buggy line
from a set of irrelevant lines is still tedious and time-
consuming.

To address the above challenges regarding the fault localiza-
tion and JIT defect prediction task, Yan et al. [12] first proposed
the task of “Just-in-time (JIT) defect localization”, which aims to
locate buggy code elements before the defect symptoms have
cased anynegative effects. Comparedwith the task of JITdefect
prediction and fault localization, JIT defect localization can
yield the following benefits: (i) Fine-granularity detection.
Compared with JIT defect prediction which detects the buggy
changes at file-level or module level, JIT defect localization
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can locate the buggy code elements at a fine-granularity (i.e.,
line-level). Such fine-granularity detection can save the devel-
oper’s time and effort to locate and address the defects. (ii)
Early stage detection. Compared with fault localization, which
heavily relies on defect symptoms and can only work after the
defects have been exposed, JIT defect localization is performed
when code change happens, in other words, JIT defect localiza-
tion locates the buggy code lineswhenever a commit is submit-
ted. The early stage detection can prevent the buggy code at an
early stage and give developers immediate feedback.

Yan et al. [12] developed their JIT defect localization
framework based on the basic idea of “software natural-
ness”. Hindle et al. [13] have investigated the possibility of
using “naturalness” for the defect prediction task, because
buggy code tends to be more “unnatural” compared with
correct code [14]. They built a traditional language model
using n-gram techniques to estimate the “naturalness” of a
submitted change, However, their approach still suffers
from several inherent disadvantages.

� Contextual Features. Their approach employed n-
gram techniques for calculating naturalness scores,
considering that n-gram technique is based on bag-
of-words (BOW) models, which can only capture the
lexical level features. When developers write code,
the code line is not written as an isolated element,
developers consider the connection of each code line
with respect to its context. Capturing the semantic
level features and contextual relations between the
code lines can boost the model.

� Out-of-Vocabulary (OOV) Problem. If a word appears
in the testing set but not in the training set, a tradi-
tional model treats this word as an unknown word
and fails to predict it in the testing phase. The OOV
problem occurs very frequently in practice because
different developers tend to define variables accord-
ing to their own habits. Previous studies [15] suggest
that such OOV problems may greatly hinder the
learning performance of the model. Their approach
can hardly handle the tokens out of vocabulary.

To address the above challenges, in this paper, we propose
a novel approach, named DEEPDL (Deep Learning-based Just-
in-Time Defect Localization), that can help developers to
locate the buggy code lines at check-in time (the inspection
phase that after developers change source code, before run-
ning the program) efficiently and accurately. DEEPDL consists
of three stages: data processing, model training and model
application. Particularly, in the data processing stage, we col-
lect code lines from the latest snapshot of a software project as
training samples to train a neural language model. To allevi-
ate the OOV problems, we leverage a Byte-Pair Encoding
(BPE) algorithm [16] to tokenize source code, which can
greatly reduce the size of the source code vocabulary and suc-
cessfully solve the unseen word in the testing set. DEEPDL can
then be trainedwith these training samples. During themodel
training stage, to effectively capture the contextual features of
the code lines and their relations, we leverage a neural lan-
guage model to learn the naturalness of the code lines. Our
neural languagemodel takes a sequence of code line blocks as
input and outputs a code line sequence, which can be formu-
lated as a sequence-to-sequence learning problem.

When it comes to the model application stage, when a
developer submits a new code change, after going through
the same data processing procedures, the newly changed
code is analysed by DEEPDL to estimate its “suspiciousness”
score. The code line with the highest suspiciousness score is
considered to be a possible defect location. DEEPDL can be
used to assist developers in identifying the location of the
potential buggy code lines during code changes, and can
consequently reduce or even avoid the introduction of bugs
in daily development.

To demonstrate the effectiveness of our approach, we
train and evaluate DEEPDL on a Java dataset which contains
14 open source Java projects from GitHub. We use the
source code from previous snapshots of the project to train
the model and use the buggy changes introduced after this
snapshot to evaluate the model. We measure the perfor-
mance of DEEPDL using Top-k accuracy, MRR and MAP.
The experimental results demonstrate that DEEPDL achieves
a Top-1 accuracy 0.32, Top-5 accuracy 0.59, MRR 0.44, and
MAP 0.40 on average, outperforming the state-of-the-art
approachs by Yan et al.’s approach [12] and CC2Vec [17].

We make the following key contributions with this work:

� We propose the first neural language model,
DEEPDL, for just-in-time line-level defect localization
task. Our model can help developers locate the sus-
picious bug code lines in a bug introducing change.

� We perform extensive experiments on DEEPDL and
our results demonstrate the effectiveness and superi-
ority of our solution wrt. the existing work.

� We confirm that a large training corpus makes a
cross-project model achieve comparable perfor-
mance to a within-project model.

The organization of this paper is as follows. Section 2
describes the background of the language model and
sequence-to-sequence model. Section 3 describes the
detailed design of our approach. Section 4 describes our
experimental design. Section 5 presents the evaluation
results. Section 6 discusses our work and gives the threats
to validity. Section 7 presents the related work. We conclude
the paper in Section 8.

2 MOTIVATION

Fig. 1 shows a commit example from the Flink project,
where the developer has submitted a commit for the pur-
pose of “Dynamically load Hadoop security module when
available”, this single commit involves 21 changed files with

Fig. 1. An example commit in Flink.
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474 additions and 144 deletions. Even the state-of-the-art JIT
defect prediction tool can successfully identify whether this
commit is buggy or not, manually checking the changed
files one by one within this commit is still time-consuming
and labor-intensive. Therefore it is preferable to have a tool
that can check the potential defective lines within these
large number of changed files automatically, We illustrate
some key usage scenarios of our proposed tool, DEEPDL, as
follows: (i) First of all, DEEPDL is able to quickly identify the
locations of the defects for the historical commits with the
help of JIT defect prediction tool. For example, as shown in
Fig. 2, developers can first leverage the JIT defect prediction
tool proposed by Hoang et al. [17] to check the buggy com-
mits, then our tool DEEPDL can be used to automatically pin-
point the suspicious buggy line among a set of non-buggy
lines. The developers can thus focus on the reported bugs
instead of painstakingly browsing the changed files one by
one. (ii) Second, our tool can also be used to remind devel-
opers in identifying the potential defect localization when
submitting a new commit. When developers submit a code
change, DEEPDL can automatically locate the suspicious
buggy code and provide the notifications, therefore the
DEEPDL can assist developers to reduce the risk of introduc-
ing bugs and improve the software’s reliability.

3 BACKGROUND

Our work adopts several recent advanced techniques from
natural language processing and deep learning [14], [18],
[19], [20], in this section, we presents the background of
these key related techniques.

3.1 Language Model

Our work is inspired by the idea of language model used in
the Natural Language Processing (NLP) field. To adapt this
idea to our task of defect localization, we want to build a
language model to estimate the “software naturalness” for a
given code fragment. Because compared with buggy code,
the clean code tends to be more “natural”.

3.1.1 Traditional Language Model

Traditional language model is a probability distribution
over sequences of words. Given a sequence of tokens
w ¼ ½t1; t2; :::ti�, the language model estimates the probabil-
ity of it. The probability is computed as

P ðwÞ ¼ P ðt1Þ
Yn
i¼2

P ðtijt1; . . . ; ti�1Þ (1)

P ðtijt1; . . . ; ti�1Þ denotes the probability that token ti fol-
lows the previous tokens, i.e., t1; . . . ; ti�1. This traditional lan-
guagemodel predicts the nextword by looking up the history
of words. As a result, the language model assigns a probabil-
ity (or a score) to a sequence ofwords. In the work of Yan et al.
[12], they adopted a traditional N-gram language model to
calculate the “naturalness” score of a code fragment. The
higher score of a new code fragment is, the more natural the
new code fragment iswith the training code corpus.

3.1.2 Neural Language Model

The traditional language model can only capture the lexical
level features, most recently, deep neural networks have
been introduced to build the neural language model (NLM),
which can improve the traditional language model. Mikolov
et al. [21] first proposed a neural language model based on
Recurrent Neural Network (RNN), since RNN is originally
designed for sequences and can catch the chain-like natures.
Sundermeyer et al. [22] introduced Long short-termmemory
(LSTM) neurons into neural language model and proposed,
which aims to address the long-term dependency problem
which can not be solved by the RNN language model. How-
ever, the LSTM language model is unidirectional that only
predicts the outputs from past inputs. A bidirectional RNN
model [23] utilizes past and future contexts by processing
the input data in both directions. Bidirectional LSTM help us
estimate the probability by using the left and right context of
that word. Bidirectional LSTM using past and future con-
texts has achieved improvements. To better capture the rela-
tionship of the current word and its context, an attention
mechanism is also added to language model. Tran et al. [24]
andMei et al. [20] demonstrated that an attentionmechanism
can improve the performance of RNN language models. The
neural language models have been shown to outperform n-
gram based language models, however, they are unable to
handle the subword information. This is especially problem-
atic in dealing with rare words or domains with dynamic
vocabularies. To the best of our knowledge, our work is the
first to employ a neural language model for just-in-time
defect localization tasks.

3.1.3 Naturalness of Code

In general, naturalness represents how “surprised” an ele-
ment is by the given document. The naturalness of code
was first proposed by Hindle et al. [13]. They found that the
source code is also very repetitive even more so than natural
languages and the repetitiveness of source code can be
captured by language models. The naturalness of code is

Fig. 2. Usage Scenario of DEEPDL.
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widely used to detect bugs or syntax errors. Ray et al. [14]
focused on the “naturalness” of buggy code and found that
buggy code tends to be more unnatural than the clean code.
And Santos et al. [25] proposed a tool to detect and correct
the syntax errors based on naturalness of code. Based on the
code naturalness, Yan et al. [12] proposed a two-phase
framework to detect buggy commits and localize buggy
code lines in buggy commits. Based on their findings, we
also leverage naturalness in our approach.

3.2 Seq2Seq Model

The language model is a fundamental task in natural lan-
guage processing, which is formalized as a probability distri-
bution over a sequence of target words. The language model
has various applications (e.g., speech recognition, text gener-
ation and machine translation), all these applications can be
viewed as generating a variable-length sequence of tokens
from a variable-length sequence of input data. Intuitively,
the sequence-to-sequence (Seq2Seq) models can model these
mappings well and achieve state-of-the-art results with
respect to the aforementioned applications [26], [27], [28].
Besides, both the encoder and decoder of Seq2Seq model can
be trained with paired text to obtain as language model [29],
[30]. Similarly, for our task of JIT defect localization, we aim
to learn the naturalness between the newly added line with
respect to its surrounding lines, we thus adopt the Seq2Seq
model to train a neural language model (i.e., the input
sequence is a code block and the output sequence is the code
line). Ideally, our neural language model will take a code
block as input and generate a “clean” code line as output
with respect to the code block. Then a “naturalness” score
can be calculated (measured by entropy) between the added
line and the generated “clean” code line.

3.2.1 Encoders & Decoders

In general, a Seq2Seq model uses an encoder-decoder archi-
tecture. It first employs an encoder to map the input
sequence into a fixed dimensional vector, then this vector is
used by the decoder to decode the target sequence. Encoder
is responsible for embedding the input sequence into a con-
textualized hidden state vector. Particularly, given the input
sequence X ¼ ðx1; x2; . . . ; xnÞ comprising a number of n
tokens. These tokens are fed sequentially into the the
encoder, which generates a sequence of hidden states
H ¼ ðh1; h2; . . . ; hnÞ. The final hidden state hn can be used as
the embedding vector v of the whole input sequence.
Decoder is responsible for generating the target sequence
based on the embedding vector. Specifically, at time step t,
the decoder takes the embedding vector of the previous
word yt�1 and the previous hidden state st�1 to produce the
output yt and hidden state st for time step t.

3.2.2 Attention Mechanism

The attention mechanism [31] has been recently proposed for
selecting the important parts from the input sequence for each
target word. In practice, we compute the attention function on
a set of queries simultaneously, packed together into a matrix.
The attention mechanism has been widely used in NLP tasks.
Different types of attention mechanisms have also been pro-
posed, i.e., self-attention, multi-dimensional attention, multi-

headed attention. The attentionmechanism amplify the signal
from the relevant part of the input sequence and provide a
better representation for the input sequence.

3.3 Transformer

Ashish et al. introduced a novel architecture called Trans-
former [19]. Its encoder and decoder use attention mecha-
nisms to replace the RNN. Our work applies this technique
and its core part is introduced below:

� Self-Attention. The input of Self-Attention consists of
queries and keys of dimension dk, and values of
dimension dv. We compute the attention function on
a set of queries simultaneously, packed together
keys(K) and values(V) into a matrix Q. We compute
the matrix of outputs as

AttentionðQ;K; V Þ ¼ softmax
QKTffiffiffiffiffi

dk
p

� �
V (2)

� Multi-Head Attention.Multi-Head Attention is a com-
bination of multiple Self-Attention structures, each
head learns features in different representation
spaces, which makes the model have more capacity.
Multi-Head Attention linearly projects the queries,
keys and values h times with different, learned linear
projections to dk , dk and dv dimensions, respectively.
It is computed as below

MultiHeadðQ;K; V Þ ¼ Concatðhead1; . . . ; headnÞWO

where headi ¼ AttentionðQWQ
i ;KWK

i ; VWV
i Þ (3)

� Positional Encoding. After embedding, we have a
matrix representation of our tokens sequence. But
these representations are not encoding the fact that
tokens appear in different positions. In order for the
model to make use of the order of the sequence, we
need to modify the meaning represented by a spe-
cific token depending on its position. Without chang-
ing the complete representation of the token, we
slightly modify it to encode its position, which is
positional encoding. There are many kinds of posi-
tional encodings, learned and fixed [32]. We use
sinusoidal functions described as follows – i is the
position of the token in the sequence and j is the
position of the embedding feature.

Pi;2j ¼ sinði=100002j=dmodelÞ
Pi;2jþ1 ¼ cosði=100002j=dmodelÞ (4Þ

� Transformer Encoder. The transformer encoder is com-
posed of a stack of N ¼ 6 identical layers. Each layer
has a multi-head self-attention mechanism sub-layer
and a position-wise fully connected feed-forward
network sub-layer. There is a residual connection
around each of the two sub-layers, followed by layer
normalization.

� Transformer Decoder. The transformer decoder is also
composed of a stack of N ¼ 6 identical layers. Each
layer has the two sub-layers that are same as encoder
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and a multi-head attention sub-layer. There is also a
residual connection around each of the two sub-
layers, followed by layer normalization.

4 APPROACH

We propose a novel deep learning based model, named
DEEPDL (Deep Learning-based Just-in-Time Defect Localiza-
tion), for just-in-time suspicious buggy code line location.
Fig. 3 outlines the details of our DEEPDL with respect to its
three stages – data processing, model training and model
application respectively.

4.1 Data Preparation

We use the same dataset setting by Yan et al. [12] for a fair
comparison. These projects have a varying number of con-
tributors. Besides, all the projects have over 5,000 changes
to ensure sufficient samples and over 2,000 stars to ensure
that the studied projects are non-trivial ones. And they have
a good issue tracking system making it easy for us to label

commits and source code lines. To make our paper self
explanatory, we describe the details of our data preparation
process as follows.

4.1.1 Collecting Training and Testing Set

In the data collecting process, we identify the clean code
lines and buggy code lines respectively. Clean code lines
are used as the training set for building a “Clean” neural
language model. Buggy code lines are used as the testing
set for evaluating the bug localization performance.

For a fair comparison, we use the same projects collected
by Yan et al. [12] and choose the same settings for the start
date and end date of each project. That is, for each project, we
collect the changes from the start of the project to October 1,
2017. Following their experimental settings, we then iden-
tify the splitting commit according to the total number of
changes in chronological order (60% of the commits for
training and 40% of the commits for testing). The splitting
commit is used to split the training and testing set. Table 1
presents the summary of the selected projects, e.g., the

Fig. 3. Overall Framework of DEEPDL.

TABLE 1
Summary of Dataset

Project Start Date End Date Snapshot Date Commits

Activemq 2011/9/15 2017/9/30 2012/7/24 13:20:44 +0000 9,871
Closure-compiler 2009/11/3 2017/9/30 2016/2/10 08:21:27 -0800 10,870
Deeplearning4j 2013/11/26 2017/9/30 2016/8/31 23:12:09 +1000 8,770
Druid 2011/5/11 2017/9/30 2013/1/14 11:29:28 +0800 5,417
Flink 2010/12/15 2017/9/30 2015/3/18 10:44:43 +0100 11,982
Graylog2-server 2010/5/17 2017/9/30 2015/5/24 12:17:44 +0100 13,702
Jenkins 2006/11/5 2017/9/30 2013/5/15 18:38:49 -0400 23,764
Jetty.project 2009/3/16 2017/9/30 2014/4/7 12:52:43 +1000 14,804
Jitsi 2005/7/21 2017/9/30 2011/1/11 14:34:18 +0000 12,608
Jmeter 1998/9/3 2017/9/30 2012/2/29 13:33:18 +0000 14,625
Libgdx 2010/3/6 2017/9/30 2014/1/5 15:38:17 -0800 13,019
Robolectric 2010/7/28 2017/9/30 2014/8/21 19:21:59 -0700 7,085
Storm 2011/9/15 2017/9/30 2016/1/5 13:58:16 +0800 8,819
H2o 2014/3/3 2017/9/30 2015/9/8 13:36:41 -0700 21,914

Total 117,250
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project name, the time period (i.e., start date and end date) we
choose for each project, the total number of commits of each
project during the time period.

For example, as shown in Fig. 4, for the Flink project, we
first count all the commits from the start date (2010/12/15)
until end date (2017/10/1), which comprises 11,982 commits
in total. After that, we can easily identify the splitting commit
(happened in 2015/03/08) for dividing the training and test-
ing set. The data before the splitting commit are used for
training and the data after the splitting commit are used for
testing.

After identifying the splitting commit, we downloaded the
snapshot of each project before the splitting commit for train-
ing. A snapshot represents the project’s state at that point of
time. To build a “Clean” neural language model, we need to
make a “Clean” snapshot. In other words, we need to
ensure that the downloaded snapshot only contains clean
code lines. We thus need to remove all the buggy lines from
the downloaded snapshot. To do this, we leverage RA-SZZ
[33] to identify the clean and buggy lines both in the training
set and the testing set. The detailed process is conducted as
follows:

1) Bug-fix commit identification. For each commit after
the splitting point, we first identify whether this
commit is a bug-fix commit. For a given commit, if
the corresponding commit message contains the
defect related message (e.g., “Fixed #233”), we then
check the corresponding issue report from the issue
tracking system (ITS) to determine whether the
report is defined as a defect. If the report is defined
as a defect and it is resolved, we mark this commit as
a bug-fix commit. If the report is defined as a defect
and it is resolved, we then mark this commit as a
bug-fix commit.

2) Bug-introducing commit identification. After identi-
fying the bug-fix commits, for each bug-fix commit,
we further leverage RA-SZZ [33] to identify the bug-
introducing commits. RA-SZZ first compares the bug-
fix commit with its previous version to identify the
changed lines. Then RA-SZZ filters out the changed
lines that are irrelevant to the defect changes (e.g.,
blank/comment lines, format modification). After

that, RA-SZZ traces back the remaining lines
through the change history to identify the commits
that introduce these lines, which are identified as
bug-introducing commits.

3) Removing buggy lines from the downloaded snap-
shot. After identifying the bug-introducing commits,
for each bug-introducing commit, if it happened
before the splitting point, then this commit has intro-
duced buggy lines to our training set. Therefore, we
need to remove the buggy lines introduced by the
bug-introducing commit and only retain the clean
lines. Following the previous work’s settings, we
define the lines that were added by the bug-introduc-
ing commit and were later fixed by the bug-fix com-
mit as buggy lines. These identified buggy lines are
further mapped to the downloaded snapshot version
of the project. We remove these buggy lines from the
downloaded snapshot, the remaining lines can be
viewed as clean code lines, which are added to the
“Clean” snapshot for training a “Clean” language
model.

4) Identifying the buggy lines within the testing set. For
each bug-introducing commit, if it is happened after
the splitting point, we add it to our testing set. Differ-
ent from removing buggy code lines from our train-
ing set, we need to identify the buggy code lines in
the testing set as ground truth for evaluating the
localization performance. Our testing set starts from
the splitting point and ends on October 1, 2017. To
ensure all the buggy lines in the testing set can be
correctly identified, following Yan et al’s work [12],
we further use a five months window (from October
1, 2017 to March 1, 2018) to cover the bug-fix and bug-
introducing commits as much as possible. This is rea-
sonable because 80% of the buggy commits are fixed
within 5 months on average [12]. Then we pin-
pointed the buggy lines within the testing set intro-
duced by the bug-introducing commits.

Finally, there are 44,244 buggy changes in the whole data
set and 11,615 buggy changes for the testing set. For our
training set, we first remove the buggy lines, the test code,
blank lines, import statements and comments from the
downloaded snapshot and retrained the rest of the source
code as clean code lines, all the clean code lines are merged
to make the clean snapshot for training. The summary of
the training set is shown in Table 2. The clean snapshot is
used for constructing code blocks to train a “Clean” neural
language model. After training, the “Clean” neural lan-
guage model is then used to locate the buggy lines in the
testing set for evaluation. For the testing set, as shown in
Table 3, we identified 11,615 bug-introducing commits,
1,134,601 added lines in commits and further pinpointed
109,311 buggy lines within these bug-introducing commits.
The largest bug-introducing commit in the testing set has
2,592 added lines. The smallest bug-introducing commit in
the testing set only contains 1 line of added code. The aver-
age number of added code lines within a commit is 98. The
median number of added code lines within a commit is 32.
And the ratio of buggy lines in a bug-introducing commit is
21.72% on average. The ratio of buggy lines in all added
lines is 9.6%.

Fig. 4. Project time line.
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After that, we leverage the tokenize tool1 to tokenize our
training set and testing set. Our DEEPDL approach code
used in our experiments and our 14 project dataset are
available at https://github.com/Lifeasarain/DeepDL.

4.1.2 Processing Training and Testing Set

After collecting the training and testing set, for each project
we collected, we obtained a “Clean” snapshot for training.
For the “Clean” snapshot, we remove the test code, blank
lines, import statements and comments. we extract the
remaining source code and split the source code into a list
of code lines ðl1; l2; . . . ; lnÞ. For each code line, we add the
two lines preceding this line and two lines subsequent this
line as its context information. That is, for a specific code
line li, a chunk of five code lines ½li�2; li�1; li; liþ1; liþ2� is
regarded as a basic line block Li for building the training
set. Finally, our final training set is built by stacking all the
line blocks together. In summary, our training set contains a
list of line blocks ½L1; L2; . . . ; Ln�. Each line block Li include
5 associated code lines, i.e., Li ¼ ½li�2; li�1; li; liþ1; liþ2�, and
each code line li contains a sequence of tokens.

Regarding the testing set, for each project we collected,
the testing set contains a set of bug-introducing commits
and the associated pinpointed buggy lines. Each bug-
introducing commits contains a set of added lines (i.e., reg-
ular added lines and buggy added lines). The buggy
added lines are the lines that are pinpointed as buggy for
introducing bugs later. When it comes to the evaluation,
since we aim to locate the buggy added lines among the
added line candidates. Therefore, for each added line
within the bug-introducing commit, we add its surround-
ing two lines to make a basic line block, we then feed
each basic line block into our neural language model to
calculate the naturalness score, or in other words suspi-
ciousness score. The top ranked added lines are consid-
ered to be potential buggy code lines, which are used to
calculate the localization performance of our model. In
summary, we collected 3,886,445 code line blocks for
training and 1,134,601 code line blocks for testing.

4.1.3 Tokenization and Building Vocabulary

In this step, for each line block Li in the training set and test-
ing set, we tokenize the code line into a list of tokens and
then build our single vocabulary. However, due to reasons
that the identifier names in the code corpus are quite arbi-
trary and vary greatly according to different developers,
simply leveraging traditional tokenization methods on the
code corpus will lead to serious Out-of-Vocabulary (OOV)
problem.

Because our model is based on neural language models,
which are sensitive to the unknown tokens, too many
unknown words in the testing corpus will significantly hin-
der the learning performance of our approach [15]. To
address this challenge, Sennrich et al. [34] proposed a sub-
word units-level model to reduce OOV problems. Follow-
ing this work, Karampatsis et al. [35] applied this technique
in modeling source code, which has been demonstrated to
be effective in reducing OOV tokens. Inspired by their
work, we first tokenize the source code line into word-level
units and then we employ a Byte Pair Encoding (BPE)
method [16] for subword segmentation. BPE is a data com-
pression technique that iteratively collects the most fre-
quent pair of bytes in a sequence and replaces it with a
single unused byte. Sennrich et al. [34] first apply this tech-
nique to the word segmentation field. They merge charac-
ters or character sequences instead of bytes. They find it
can actually improve performance in neural machine trans-
lation models. BPE builds up the vocabulary iteratively.
For each iteration, the training corpus (in our case: a code
line) is segmented into a sequence of subwords (symbols)
based on the current vocabulary (a suffix symbol ’@’ is
added to reorganize the original sequence of tokens). Fol-
lowing that, we count all the symbol pairs, the most fre-
quent symbol pair (W1, W2) is merged and replaced with a
new symbol ’W1W2’ and added to the vocabulary. BPE
algorithm takes all characters in the data set as initial
vocabulary and stops after the given number of merge
operations. An example of a Java code snippet tokenized
into BPE subwords is shown in Fig. 5.

TABLE 3
Summary of Test Set

Project Commits Buggy
Commits

Total Added Lines in
Buggy Commit

Buggy
Lines

Activemq 3,948 597 64,156 8,433
Closure-
compiler

4,348 584 38,432 3,998

Deeplearning4j 3,508 1,024 81,280 10,254
Druid 2,167 356 66,981 2,361
Flink 4,793 1,317 281,676 20,228
Graylog2-
server

5,481 783 68,208 12,793

Jenkins 9,506 1,030 47,185 5,297
Jetty.project 5,922 1,089 104,832 8,322
Jitsi 5,043 1,318 115,124 13,742
Jmeter 5,850 1,265 39,796 6,536
Libgdx 5,208 609 57,612 6,144
Robolectric 2,834 418 53,132 3,818
Storm 3528 103 30,200 1104
H2o 8,766 1,122 85,987 6,281
Total 70,902 11,615 1,134,601 109,311

TABLE 2
Summary of Training Set

Project Code Lines Before Processing Code Blocks

Activemq 431,051 357,056
Closure-compiler 417,665 363,648
Deeplearning4j 570,009 486,080
Druid 197,770 152,431
Flink 1,011,692 855,808
Graylog2-server 199,461 174,464
Jenkins 166,077 137,280
Jetty.project 302,994 212,352
Jitsi 308,285 218,624
Jmeter 142,428 120,510
Libgdx 256,867 210,432
Robolectric 171,886 144,768
Storm 287,266 231,360
H2o 259,549 221,632
Average 337,357 277,603

1. https://tree-sitter.github.io

5074 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Zhejiang University. Downloaded on July 02,2024 at 11:25:46 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/Lifeasarain/DeepDL


The reasons why we adopt BPE algorithm for tokeniza-
tion are as follows: (i) The OOV problem can be alleviated.
Because our vocabulary contains more words, more
unknown words in the testing set now can be represented
properly. Common sequences can be represented by a sin-
gle word, while the rare or unseen word will be segmented
into more common subwords. (ii) The size of the vocabulary
can be significantly reduced. Even the new identifier names
proliferate as code corpus increases, we can maintain a code
vocabulary with relatively small vocabulary size.

As a result, given a basic code line block Li ¼ ½li�2; li�1;
li; liþ1; liþ2� from training set, for each code line
lkði� 2 � k � iþ 2Þ, lk is tokenized into a sequence of sub-
word units, i.e., lk ¼ ½uk1 ; uk2 ; . . . ; ukn �, where ½uk1 ; uk2 ; . . . ;
ukn � represents the subword unit tokens after tokenization.
For example, as shown in Fig. 5, the second code line
“block.addChildToFront( newBranchInstrumen-

tationNode(traversal);” is tokenized to a sequence
of subword units [‘block’, ‘.’, ‘add’, ‘Child’, ‘ToFront’,
‘new’, ‘Branch’, ‘In’, ‘stru’, ‘mentation’, ‘Node’, ‘(’,
‘traversal’, ‘)’, ‘;’] by applying the BPE tokenization
method described above. When tokenizing this source code
line, the BPE algorithm encounters two out of vocabulary
tokens, e.g., ‘addChildToFront‘ and ‘newBranchIns-
trumentationNode‘. Take ‘newBranchInstrumentat-
ionNode‘ as an example, BPE splits ‘newBranchInst-
rumentationNode‘ into a sequence of characters and
apply the learned operations to merge the characters into
larger, known word in the vocabulary. Since the words
‘new’, ‘Branch’, ‘In’, ‘stru’, ‘mentation’, ‘Node’ already
exist in the vocabulary, so this OOV word ‘newBranch-
InstrumentationNode’ is split into a chunk of subword
unit tokens [ ‘new’, ‘Branch’, ‘In’, ‘stru’, ‘mentation’,
‘Node’ ].

Traditional tokenizers can only split the source code into
tokens according to grammar, BPE can split the tokens toke-
nized by traditional tokenizer into finer granularity sub-
word units. In this way, we can reduce the size of
vocabulary and alleviate OOV problems.

After that, we add a special token ‘hEOLi’ to separate each
line and a special token ‘hEOSi’ to the end of each basic line
block. Finally, we obtained 5,021,046 code line blocks. For
each code line block Li, Li will be tokenized as a sequence
of subword units, i.e., Li ¼ ½li�2; hEOLi; li�1; hEOLi; li; hEOLi;
liþ1; hEOLi; liþ2; hEOSi�, where lk ¼ ½uk1 ; uk2 ; . . . ; ukn �.

4.2 Model Training

4.2.1 Model Overview

Naturalness represents how “surprised” an element is by a
given document. Previous studies have demonstrated the
effectiveness of using a language model to capture the
“naturalness” of software [14]. They found that buggy code
is rated as significantly more “unnatural” by language mod-
els. Inspired by these findings, we propose a neural lan-
guage model, DEEPDL, to locate the suspicious code
elements when the code change happens.

After the data preparation process, all the training line
blocks are tokenized into subword unit sequences. For a
given processed line block Li ¼ ½li�2; hEOLi; li�1; hEOLi;
li; hEOLi; liþ1; hEOLi; liþ2; hEOSi�, we want to build a neural

language model to estimate the naturalness of the central
source code line (i.e., li) with respect to its context (i.e.,
½li�2; li�1; liþ1; liþ2�). By this we mean for a given code block,
whether the central code line is “natural” with respect to
their surrounding lines. We formulated this task as a
sequence-to-sequence (Seq2Seq) learning problem, which
turns one sequence (i.e., the source sequence) into another
sequence (i.e., the target sequence). The primary compo-
nents of the Seq2Seq model are encoder and decoder net-
work. The encoder turns each item within the source
sequence into a corresponding hidden vector, while the
decoder reverses the process, turning the vector into a target
sequence item.

In this study, we set the source sequence Xsrc as the
whole line block Li (i.e., Xsrc ¼ Li), and we set the target
sequence Ytgt as central code line of each code block (i.e.,
Ytgt ¼ ½li�). Mathematically, given Xsrc is a sequence of
tokens within the code line block, our neural language
model aims to generate the central code line Ytgt, which is
“natural” to its context. Overall, our goal is to train a lan-
guage model u using hXsrc, Ytgti pairs, such that the proba-
bility PuðYtgtjXsrcÞ is maximized over the given training
dataset, PuðYtgtjXsrcÞ can be seen as the conditional log-like-
lihood of the central code line given the code block input.

4.2.2 Encoders

Our model follows a sequence-to-sequence architecture and
the encoder part learns latent features from source code
lines. Recently, Transformers have been widely used to cap-
ture the code semantic features by encoding code into vec-
tors [36]. In this study, we employ a Transformer Encoder
[19] as the encoder template for our task. The transformer
encoder is composed of a stack of 6 residual encoder blocks,
each encoder block is broken down into two sub-layers (i.e.,
a self-attention sub-layer and a feed-forward network sub-
layer). The input to the transformer encoder is a sequence of
tokens, the input sequence of tokens flows through each of
the two layers of the encoder components. The first encoder
block transforms the input sequence from a context-inde-
pendent token representation to a context-dependent vector
representation, and the following encoder blocks further
refine this contextual representation until the last encoder
block outputs the final contextual encoding. The output of
the transformer is a contextualized vector of the input
sequence.

Fig. 5. Tokenize example.

QIU ETAL.: DEEP JUST-IN-TIME DEFECT LOCALIZATION 5075

Authorized licensed use limited to: Zhejiang University. Downloaded on July 02,2024 at 11:25:46 UTC from IEEE Xplore.  Restrictions apply. 



To better estimate the “naturalness” of a code line block,
we adopt two encoders, i.e., Central Line Encoder and Context
Line Encoder to embed the central line and context lines into
vector representation respectively. In this study, Central
Line Encoder and Context Line Encoder are the same in struc-
ture which use the transformer encoder. Likewise, the input
to the encoders is a basic code line block Li, the outputs of
the encoders are two embedding vectors respectively.
Through the two encoders, the semantically related con-
cepts across different source code lines can be mapped and
correlated in the higher dimensional vector space.

� Central Line Encoder. For a basic code line block Li,
the Central Line Encoder extracts out the central line
(i.e., li) and uses the transformer encoder to embed it
into a semantic vector xcen.

� Contextual Line Encoder. For a basic code line block Li,
we extract out the two lines before the central line
(i.e., ½li�2; li�1�) as the preceding context, and two
lines after the central line (i.e., ½liþ1; liþ1�) as the sub-
sequent context. Similar to the Central Line Encoder,
After feeding the preceding context and the subse-
quent context into the Context Line Encoder, we can
get the embedding vector xcon for the context lines
within a code line block.

4.2.3 Decoders

The decoder’s job is to generate the target sequence. Similar
with the transformer encoder, the transformer decoder has
similar sub layers. The transformer decoder is composed of
6 decoder blocks. Each decoder block has two self-attention
layers, and a feed-forward layer. The decoder is capped off
with a linear layer and a softmax layer to get the final word
probability distributions. The decoder is auto-regressive, in
particular, it takes the encoder’s contextualized vectors as
well as the previous outputs as inputs, and generates a sin-
gle output step by step.

To connect the Encoder and Decoder, we employ a cross-
attention layer. In particular, after getting the central line
vector xcen and the context line vector xcon, the cross-atten-
tion layer takes xcen and xcon as input and outputs a hidden
state vector xh. We then send xh into our transformer
decoder, the transformer decoder will turn the hidden vec-
tor into a target sequence. Mathematically, given the hidden
states xh, the transformer decoder calculates the conditional
probability distribution of the target sequence Ytgt, i.e.,
PuðYtgtjxhÞ, as follows

PuðYtgtjxhÞ ¼
YL
i¼1

PuðyijY0:i�1; xhÞ (5)

where L is the length of the target sequence Ytgt. The trans-
former decoder first maps the encoded hidden states (i.e.,
xh) and all the previous target states Y0:i�1, to logit vector li.
The logit vector li is then processed by the softmax opera-
tion to estimate the conditional distribution PuðyijY0:i�1; xhÞ.
After calculating the above conditional distribution, we can
auto-regressively generate the output sequence and thus
define a mapping of an input sequence Xsrc to an output
sequence Ytgt.

4.2.4 Data Flow

We summarize the data-flow of our model as follows: as
shown in Fig. 6, the input to our model is a basic code line
blockLi, which is broken into two parts (the central code line
½li� and the context code lines ½li�2; li�1; liþ1; liþ2�). Each code
line is represented as a sequencee of subword unit tokens.
Then the central code line is passed through the Central Line
Encoder to generate the central line encoded vector xcen, while
the context code lines are passed through the Context Line
Encoder to generate the context lines encoded vector xcon.
After that, a cross attention layer takes the xcen and xcon as
input and outputs a hidden state vector xh, which can cap-
ture the relationship between the central code line and the
context code lines. The hidden state vector xh is then passed
through the Decoder part to generate the target sequence.
The Decoder part takes in the encoded hidden states (i.e., xh)
and step by step generates a single output yi while also being
fed the previous output Y0:i�1. To be more specifically, the
transformer decoder first maps the hidden state vector (i.e.,
xh) as well as the previous output Y0:i�1 to a logit vector li,
the logit vector li then goes through a final softmax layer to
model the conditional probability distribution of the target
sequence. The softmax layer will produce a probability dis-
tribution vector over all vocabulary tokens, and we choose
the tokenwith the highest probability as the predicted token.

4.2.5 Loss Function

We leverage a cross entropy loss function to calculate the
loss of the model. The cross entropy (entropy in short) is a

Fig. 6. Architecture of proposed approach.
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widely-adopted metric used in statistical language models,
a sentence with higher entropy score is considered to be
more natural. Ray et al. [14] investigated the possibility of
using entropy to estimate the “naturalness of buggy code”.
The core research question of their work is “can entropy
provide a useful indication of the likely bugginess of a line
of code?”. According to their experimental results, they
found that buggy code lines have higher entropy scores
than non-buggy lines, which means the entropy can be an
indicator to measure the naturalness (or suspiciousness) of
a code snippet. The higher entropy of a code snippet, the
more unnatural (or suspicious) the code snippet is with the
training corpus. In particular, regarding the decoding pro-
cess, the probability of generating a token yi is P ðyiÞ. During
the training process, for each token at each timestamp, the
loss associated with the generated central code line is
� 1

l

Pl
i¼1 log 2pðyiÞ, where l is the length of the central code

line. The final goal of our model is to minimize the cross
entropy, i.e., minimize the following objective function over
all the training dataset

HðyÞ ¼ � 1

N

XN
j¼1

Xl

i¼1

log 2pðyðjÞi Þ (6)

where N is the number of training instances, y
ðjÞ
i represents

the ith token in the jth training sample. The cross entropy
describes how much the predicted probability diverges
from the ground truth. Through optimizing the above objec-
tive loss function using optimization algorithms (e.g., gradi-
ent descendant), the parameters u of our model can be
estimated. Finally, after the training process, we can obtain
a neural language model (i.e., DEEPDL). The neural language
model maximizes the probability of the target sequence
given the input sequence (i.e., PuðYtgtjXsrcÞ) over our train-
ing dataset.

4.3 Model Application

For practical application, the input of DEEPDL is a buggy
commit (identified by the JIT defect prediction tools) or a
newly submitted commit. Given a buggy code commit,
DEEPDL first extracts all the added code lines within this
commit. For each added line, we make a code line block by
adding its surrounding two lines, we process the code line
block as described in Sections 4.1.1 and 4.1.2. For each code
line block, we fed the code line block into our trained neural
language model, DEEPDL, to generate an output sequence.
The generated sequence can be considered as a “clean”
code line since it is generated from our trained “clean” neu-
ral language model. After that, we can calculate the entropy
between the generated sequence and the added line, and
the entropy of the added code line can be computed as the
average of the entropy of each subword token within this
code line, as follows

HpðsÞ ¼ 1

jsj
Xjsj
n¼1

HpðtiÞ (7)

Finally, we get the entropy of all the added lines in the
buggy commits and treat the entropy as its suspiciousness
score. The code line with the highest suspiciousness score is
considered to be a possible defect location in the code. Simi-
lar to the buggy commit, if we are handling the newly

submitted commits, by following the same application pipe-
line, DEEPDL can identify the suspicious added lines within
the newly submitted commits, which can reduce the risk of
introducing bugs and improve the software’s reliability.

5 EXPERIMENT SETUP

We first introduce our data preparation process, then pres-
ent the detailed parameter settings for training our DEEPDL
approach. We then introduce our chosen evaluation metrics
used in this study for evaluating the performance of our
approach.

5.1 Training Details

We set the initial learning rate to 0.1 with a momentum of
0.5 and clip the gradients norm by 5. The learning rate decay
of 0.99. The size of mini-batches is 16. Our model is trained
using the Stochastic Gradient Descent (SGD) algorithm. We
use the cross-entropy as the loss function. It is worth men-
tioning that for each project, we reserve 10% of the training
set as the validation set. We further tuned the hyperpara-
meters according to the performance of the model on the
validation set. Specifically, for each project, the training
runs for 50 epochs and we save the model after each epoch,
we then select the model with the best performance (the
lower of the entropy score, the better performance of the
neural language model) on validation set as our final neural
language model. We build our model based on Pytorch2

using four NVIDIA RTX 2080Ti GPU.

5.2 Evaluation Measure

To evaluate the performance of our approach, we use the
widely accepted metrics MRR (Mean Reciprocal Rank),
MAP (Mean Average Precision) [37] and Top-k Accuracy as
the evaluation metrics. In addition, these evaluation metrics
are also adopted in Yan et al’s work. Thus they can be used
for fair comparison purposes We introduce the details of
these three evaluation metrics as follows.

5.2.1 MRR

MRR is a popular metric used to evaluate an information
retrieval technique [37]. For a given query, its reciprocal
rank is the multiplicative inverse of the rank of the first cor-
rect answer. For our study, MRR measures how far we need
to check down a sorted list of added lines of a buggy change
to locate the first buggy line. It can be computed as follows

MRR ¼ 1

jQj
XjQj

i¼1

1

ranki
(8)

where Q is the number of queries. MRR is the average of the
reciprocal ranks for queries Q.

5.2.2 MAP

MAP provides the mean of the average precision scores for
a set of queries. The average precision (AP) of a query is the
average of the precision values for this query. MAP consid-
ers the ranks of all buggy lines in that sorted list. It can be

2. https://pytorch.org
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computed as

AP ¼
XM
i¼1

P ðiÞ � relðiÞ
number of relevant documents

(9)

where i is then rank in the sequence of retrieved item, P ðiÞis
the precision at cut-off i in the list. relðkÞ is a indicator func-
tion equaling 1if the item at rank i is a relevant item

MAP ¼ 1

N

XN
i¼1

APi (10)

Our evaluation is performed at the change-level. Each
buggy change in our test set has a MRR and a MAP perfor-
mance value. The higher MRR and MAP value means that
the model has a better bug localization performance.

5.2.3 Top-K Accuracy

Top-k Accuracy measures whether the Top-k most likely
buggy lines returned by our approach are actually the
buggy code location. For example, given one defect change
c, if at least one of the Top-k most likely buggy lines
returned by our approach is actually the buggy location, we
regard the localization as successful, and set the Top-k value
of this change TopkðcÞ to 1; otherwise, we regard the locali-
zation as unsuccessful and set the Top-k value TopkðcÞ to 0.
Consider a set of N defect changes in a project P, its Top-k
accuracy is computed as

TopkðP Þ ¼ 1

N

XN
c¼1

TopkðcÞ: (11)

Following the experimental settings in previous studies
[12], in this paper, we set k ¼ 1 and 5.

6 EMPIRICAL EVALUATION

We evaluate the performance of our new DEEPDL approach
on 14 open source projects. We attempt to answer the fol-
lowing key research questions:

� RQ1: How effective is our approach compared with
the state-of-the-art baselines?

� RQ2: How effective is our approach when using
cross-project modeling?

� RQ3: How effective is our approach for using of con-
text information and BPE tokenization methods?

6.1 RQ1: Effectiveness Evaluation

6.1.1 Experimental Setup

To evaluate the effectiveness of our model, we conducted
extensive experiments on the selected 14 projects. We use
our trained neural language model, DEEPDL, to predict the
locations of buggy lines within the test set. We compare
DEEPDL with the following state-of-the-art models for com-
parison purposes:

� Yan’s approach. Yan’s approach is currently the
state-of-the-art JIT defect localization approach. It
estimates software naturalness with the N-gram lan-
guage model, which can locate suspicious defective

lines in a defect change at check-in time. Different
from building the n-gram language model, in this
study, we employ the transformer based encoder
and decoder to make an neural language model.

� CC2Vec. CC2Vec is the state-of-the-art defect predic-
tion tool. CC2Vec is an embedding-based approach
proposed by Hoang et al. [17]. Different from the JIT
defect localization task, CC2Vec is designed for the
JIT defect prediction task. For a given commit,
CC2Vec learns two embedding vectors from the log
message and code change and outputs a probability
to judge if this commit is buggy or not. To adapt this
JIT defect prediction tool to our task of JIT defect
localization, for a given commit, we regard each
added line of this commit as a single commit, then
the added line is passed through CC2Vec to produce
a probability indicating that this added line is buggy.
The added lines with highest probability scores will
be considered as potential buggy lines for this com-
mit. It is worth to mention that for a fair comparison,
we drop the log message related features and only
keep the code change part for CC2Vec, this is reason-
able because DEEPDL only model the source code
without considering additional information.

6.1.2 Experimental Results

Table 4 illustrates the Top-1 and Top-5 accuracy, MRR,
MAP of our approach and the baselines. We can observe the
following points from the table:

1) The CC2Vec model achieves the worst performance regard-
ing different evaluation measurements. The CC2Vec
model is originally designed for the task of JIT defect
prediction. It formulates the JIT defect prediction task
as a binary classification problem, that is given a com-
mit, CC2Vec outputs a probability score to judge this
commit is buggy or not. We transfer their approach
from predicting a buggy commit to predicting a
buggy line (treating each separate line as a commit).
The suboptimal performance of CC2Vec indicates
that the binary classification strategy is not suitable
for the task of JIT defect localization. This is because
CC2Vec treats a single added line as input, it is thus
unable to consider the preference relationship among
different code lines. By contrast, the language model
based approaches (including Yan’s approach and
ours) models the historical clean code lines, which
can estimate the naturalness of the source code.

2) Our approach outperforms Yan’s approach in terms
of all measures on average. From the Table 4, we can
see that our approach can achieve a higher accuracy
than Yan’s approach with the defect localization
task. For example, the improvement of our approach
over Yan’s approach is 11.42% for Top-1 accuracy
and 9.69% for Top-5 accuracy, while 11.35% for
MAP and 9.55% for MRR scores. We attribute this to
the following reasons: First, bothDEEPDL and Yan’s
approach adopt the language model, however, Yan’s
approach builds the language model with n-grams,
which can only capture the lexical level features. In
this study, we use the transformer based encoder
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and decoder to construct a neural language model,
which not only considers the lexical level features
but also semantic level features. Second, we adopt
the BPE algorithm for tokenization, which can solve
the OOV problem when dealing with the testing set.

3) Regarding all the 14 projects, the improvements of our pro-
posed model over baseline are significant. To test the sta-
tistical significance, we employ the Wilcoxon signed-
rank test [38] with a Bonferroni correction [39] at 95%
confidence level. The Wilcoxon signed-rank test is a
non-parametric hypothesis test that used to compare
twomatched samples to assess whether their popula-
tion mean ranks differ, while Bonferroni correction is
used to counteract the problem of multiple compari-
sons. From the table, we can see that on average all
the p-values are substantially smaller than 0.05,
which shows that the improvements of our proposed
model are statistically significant.

4) Only for the project ”Druid” is the Top-1 accuracy of
our approach is lower than the baseline. This is
because the number of bug introducing changes in
this project is small and the bug introducing lines are
relatively low in the added lines in most bug intro-
ducing changes. Both our approach and the baseline
do not perform well on the top-1 accuracy. Except
for this indicator, Our approach outperforms the
baseline in terms of all the measures, we argue that
the improvement of our approach is significant.

Answer to RQ1: How effective is our approach compared with
the state-of-the-art baseline? – we conclude that our approach
significantly outperforms the baseline and achieves a new state-
of-the-art performance for just-in-time defect localization.

6.2 RQ2: Cross-Project Evaluation

6.2.1 Experimental Setup

A cross-project defect localization technique trains the local-
ization model by using data from other source projects and

uses the trained model to perform defect localization for the
target project. To measure the performance of our approach
in cross-project defect localization, we build our DEEPDL
model by learning from all other projects. To identify
defects in the target project, it follows a two-step process,
model building step and model application step. In the
model building step, we first combine all the training data
of other projects except the target one as a multi-project
training set. A specific localization model is then built based
on this corpus using the same setting in RQ1. During the
model application step, we choose the target project as test-
ing set and run the model on this set. Finally, we compare
the performance of the cross-project model with the within-
project model.

6.2.2 Experimental Results

Table 5 shows the performance of the cross-project model
and corresponding within-project model. From the table,
we can see that the cross-project model achieves a comparable
performance to the within-project model. In all projects, the
within-project model achieves a slightly better performance
on average compared with the cross-project model. For
example, the average Top-1, Top-5, MRR and MAP score of
cross-project model are 0.3163, 0.5826, 0.441, 0.395, while
the within-project model achieves very close performance
of 0.3169, 0.5849, 0.4430 and 0.3972 respectively.

We can conclude that a cross-project defect prediction
model is feasible. This is because the training corpus in the
cross-project is much larger than the corpus used for the
within-project. For example, in our cross-project setting, the
size of training corpus is about 236MB on average. In our
within-project setting, the size of training corpus is about
18MB on average. The cross-project training corpus is 13
times larger than the within-project training corpus. When
our DEEPDL model is trained with the larger cross-project
data, it successfully capture the program semantics and
automatically learns the naturalness of the code from differ-
ent types of projects, this also justifies the robustness and
generalize ability of our model. This enlightens us that we

TABLE 4
The Performance DEEPDL versus Baselines

Project Top-1 accuracy Top-5 accuracy MRR MAP

Yan’s CC2Vec Ours Yan’s CC2Vec Ours Yan’s CC2Vec Ours Yan’s CC2Vec Ours

Activemq 0.3936 0.3417 0.4070 0.5628 0.5142 0.6348 0.4785 0.4317 0.5117 0.4505 0.4217 0.4749
Closure-compiler 0.2432 0.2226 0.2774 0.4966 0.4452 0.4983 0.3650 0.3404 0.3933 0.3504 0.3289 0.3718
Deeplearning4j 0.2451 0.1963 0.3184 0.4971 0.4189 0.5908 0.3702 0.3150 0.4464 0.3264 0.2847 0.3746
Druid 0.2107 0.1517 0.1966 0.4157 0.2949 0.4663 0.3149 0.2330 0.3297 0.2720 0.2043 0.2975
Flink 0.2065 0.1716 0.2445 0.4146 0.3470 0.4761 0.3125 0.2625 0.3584 0.2608 0.2307 0.2894
Graylog2-server 0.3384 0.3207 0.3742 0.5951 0.5249 0.6731 0.4637 0.4207 0.5077 0.4222 0.3961 0.4503
Jenkins 0.3602 0.2951 0.3748 0.6184 0.5436 0.6699 0.4834 0.4149 0.5149 0.4536 0.4026 0.4792
Jetty 0.2452 0.1928 0.2773 0.4702 0.4279 0.5427 0.3550 0.3104 0.4022 0.3210 0.2838 0.3537
Jitsi 0.3475 0.3126 0.3634 0.6297 0.5849 0.6798 0.4798 0.4373 0.5043 0.4325 0.4007 0.4425
Jmeter 0.4545 0.4103 0.4980 0.7462 0.6743 0.7968 0.5838 0.5336 0.6285 0.5615 0.5188 0.6048
Libgdx 0.3448 0.2808 0.3711 0.6010 0.5107 0.6568 0.4668 0.3945 0.4981 0.4258 0.3740 0.4582
Robolectric 0.2368 0.1699 0.2536 0.4928 0.4115 0.5383 0.3654 0.2920 0.3851 0.3145 0.2662 0.3301
Storm 0.0971 0.0874 0.1748 0.3495 0.2524 0.3689 0.2062 0.1840 0.2789 0.1810 0.2338 0.2338
H2o 0.2584 0.2299 0.3057 0.5258 0.4483 0.5954 0.3854 0.3427 0.4427 0.3542 0.3197 0.3996

average 0.2844 0.2416 0.3169 0.5297 0.4571 0.5849 0.4022 0.3509 0.4430 0.3662 0.3197 0.3972
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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can train a defect localization model with a large training
corpus, and then apply it to new projects in future applica-
tions. While the model has achieved good performance, we
have saved a lot of training time and the model is more
versatile.

Answer to RQ2: How effective is our approach when using
cross-project modeling? – we conclude that training our
approach with cross-project data is feasible and can achieve
comparable performance as the within-project setting.

6.3 RQ3: Ablation Evaluation

6.3.1 Experimental Setup

Our approach adds two enhancements to the original Seq2-
Seq model: using BPE method in the tokenization step for
solving the OOV problems, and using the code line’s

context for better representing the program semantics. To
evaluate the performance of our approach of incorporat-
ing these two techniques, we also perform an ablation
analysis to investigate if such enhancements significantly
improve the performance of our approach. To do this we
compare the performance of DEEPDL with its two var-
iants as follows:

� WB (Without BP) Model: WB model drops the BPE
tokenization technique in data processing stage, and
replaces it with the traditional tokenization method.

� WC (Without Context) Model: WC model drops the
context information we added to the code lines, and
trains the DEEPDL with a single line instead.

6.3.2 Experimental Results

Tables 6 and 7 demonstrates the performance of our
approach compared with WB and WC respectively. From

TABLE 5
The Performance Cross-Project Model versus Within-Project Model

Project Top-1 accuracy Top-5 accuracy MRR MAP

CP WP Improve CP WP Improve CP WP Improve CP WP Improve

Activemq 0.4154 0.4070 -2.01% 0.6181 0.6348 2.71% 0.5146 0.5117 -0.57% 0.4779 0.4749 -0.63%
Closure-compiler 0.2759 0.2774 0.54% 0.5017 0.4983 -0.68% 0.3962 0.3933 -0.73% 0.3743 0.3718 -0.66%
Deeplearning4j 0.3174 0.3184 0.30% 0.5879 0.5908 0.50% 0.4442 0.4464 0.50% 0.3720 0.3746 0.71%
Druid 0.2022 0.1966 -2.76% 0.4579 0.4663 1.83% 0.3249 0.3297 1.48% 0.2896 0.2975 2.74%
Flink 0.2498 0.2445 -2.12% 0.4951 0.4761 -3.84% 0.3640 0.3584 -1.54% 0.2900 0.2894 -0.21%
Graylog2-server 0.3908 0.3742 -4.25% 0.6731 0.6731 -0.01% 0.5169 0.5077 -1.78% 0.4536 0.4503 -0.73%
Jenkins 0.3592 0.3748 4.33% 0.6573 0.6699 1.92% 0.5002 0.5149 2.94% 0.4670 0.4792 2.62%
Jetty 0.2617 0.2773 5.97% 0.5298 0.5427 2.43% 0.3870 0.4022 3.93% 0.3434 0.3537 3.00%
Jitsi 0.3695 0.3634 -1.64% 0.6737 0.6798 0.91% 0.5068 0.5043 -0.50% 0.4428 0.4425 -0.08%
Jmeter 0.4830 0.4980 3.11% 0.7794 0.7968 2.24% 0.6146 0.6285 2.26% 0.5946 0.6048 1.71%
Libgdx 0.3744 0.3711 -0.88% 0.6355 0.6568 3.35% 0.4982 0.4981 -0.02% 0.4565 0.4582 0.38%
Robolectric 0.2512 0.2536 0.95% 0.5526 0.5383 -2.59% 0.3856 0.3851 -0.13% 0.3361 0.3301 -1.77%
Storm 0.1650 0.1748 5.91% 0.4078 0.3689 -9.53% 0.2758 0.2789 1.11% 0.2341 0.2338 -0.13%
H2o 0.3128 0.3057 -2.27% 0.5865 0.5954 1.52% 0.4453 0.4427 -0.58% 0.3975 0.3996 0.53%

average 0.3163 0.3169 0.19% 0.5826 0.5849 0.39% 0.4410 0.4430 0.45% 0.3950 0.3972 0.56%
p-value >0.05 <0.05 <0.001 <0.001

TABLE 6
The Performance Without BPE Model versus Enhanced Model

Project Top-1 accuracy Top-5 accuracy MRR MAP

WB Original Improve WB Original Improve WB Original Improve WB Original Improve

Activemq 0.3735 0.4070 8.97% 0.5796 0.6348 9.54% 0.4762 0.5117 7.44% 0.4580 0.4749 3.68%
Closure-compiler 0.2894 0.2774 -4.14% 0.5086 0.4983 -2.02% 0.3960 0.3933 -0.67% 0.3701 0.3718 0.47%
Deeplearning4j 0.2988 0.3184 6.54% 0.5518 0.5908 7.08% 0.4215 0.4464 5.91% 0.3546 0.3746 5.65%
Druid 0.2360 0.1966 -16.67% 0.4522 0.4663 3.11% 0.3449 0.3297 -4.42% 0.2968 0.2975 0.26%
Flink 0.2103 0.2445 16.25% 0.4366 0.4761 9.04% 0.3250 0.3584 10.28% 0.2668 0.2894 8.47%
Graylog2-server 0.3729 0.3742 0.34% 0.6054 0.6731 11.18% 0.4843 0.5077 4.84% 0.4314 0.4503 4.38%
Jenkins 0.3670 0.3748 2.12% 0.6379 0.6699 5.02% 0.4950 0.5149 4.02% 0.4517 0.4792 6.09%
Jetty 0.2525 0.2773 9.82% 0.4995 0.5427 8.64% 0.3756 0.4022 7.09% 0.3272 0.3537 8.10%
Jitsi 0.3422 0.3634 6.21% 0.6351 0.6798 7.05% 0.4798 0.5043 5.09% 0.4211 0.4425 5.07%
Jmeter 0.4957 0.4980 0.48% 0.7897 0.7968 0.90% 0.6285 0.6285 0.00% 0.5992 0.6048 0.93%
Libgdx 0.3415 0.3711 8.65% 0.6190 0.6568 6.10% 0.4647 0.4981 7.19% 0.4238 0.4582 8.13%
Robolectric 0.2297 0.2536 10.42% 0.4785 0.5383 12.50% 0.3529 0.3851 9.13% 0.3089 0.3301 6.87%
Storm 0.1650 0.1748 5.88% 0.3883 0.3689 -5.00% 0.2726 0.2789 2.30% 0.2137 0.2338 9.42%
H2o 0.2941 0.3057 3.94% 0.5793 0.5954 2.78% 0.4306 0.4427 2.81% 0.3814 0.3996 4.77%

average 0.3049 0.3169 3.94% 0.5544 0.5849 5.50% 0.4248 0.4430 4.27% 0.3789 0.3972 4.82%
p-value <0.001 <0.001 <0.001 <0.001
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the tables, we can see that the DEEPDLoutperforms the WB
model and the WC model by a large margin on average. Regard-
ing the Top-1 accuracy, The improvement of our approach
over WB is 3.94% and the improvement over WC is 3.28%
on average. The evaluation result verifies the importance
and necessity of these two techniques incorporated within
DEEPDL, and further confirms their usefulness for enhanc-
ing the performance of defect localization.

By dropping the BPE tokenization method from data
processing, the average number of unknown words sharply
increases from 68 to 6215 (about 100 times larger). When
there are too many OOV tokens in the testing set, the natu-
ralness score estimated by DEEPDL will be greatly affected
by these unknown words. It can no longer effectively calcu-
late the likelihood of a buggy code line. Under such condi-
tions, the bug probability score we calculated is also
inaccurate and unreliable.

By dropping the context of the code line and treating
each single code line as input, the model loses much valu-
able information of this code line. However, the adjacent
code lines are often closely connected with each other and
should be considered as an united block. The performance
drop between our approach and WC further justifies our
assumption, that the context information do have contribu-
tions on the overall performance of our approach.

Answer to RQ3: How effective is our approach for using of
context information and BPE tokenization methods? – we con-
clude that both the context information and BPE method are
effective and helpful to enhance the performance of our
approach.

6.4 Threats to Validity

Threats to internal validity refer to errors in our experiments.
For each task, we carefully reuse existing implementations of
the baseline approach [12]. We have double checked our
code and implementation, but errorsmay remain.

Threats to external validity concern the generalizability
of our approach. In our experiment, we only consider Java
software projects. Although the results on Java have proved
the effectiveness of our approach, we do not verify the gen-
erality of our approach to projects written in other program-
ming languages, which may be a threat to external validity.
When doing further research in other programming lan-
guages, some steps should be carefully adapted. For exam-
ple, removing testing files, removing comments and code
tokenization should follow different programming lan-
guage rules. In the future, we will extend our approach to
other programming languages to mitigate this threat.

Threats to the quality of collected dataset. We collected
the bug introducing changes and bug introducing code lines
from the open source projects as other work does. Although
the mining method RA-SZZ [33] can deal with noise includ-
ing blank/comment lines, format modifications and refac-
toring modifications, there is some noise in our dataset. In
the future, we will investigate a better technique to build a
better dataset.

Threats to the model validity relates to model structure
that could affect the learning performance of our approach.
In this study, we choose the transformer-based encoder and
decoder to build a neural language model for capturing the
naturalness of the source code. Recent research has pro-
posed new models, such as BERT [40], ALBERT [41], GPT
[42], that can achieve better performance than transformer.
However, our results do not shed light on the effectiveness
of employing other advanced models with respect to differ-
ent structures and new features. We will try to use other
deep learning models for our tasks in future work.

7 DISCUSSION

7.1 Impact of Different Methods for Using Entropy

When submitting code changes, in order to detect the locali-
zation of the possible buggy line, our tool DEEPDL sorts all
of the added lines according to their line entropy. Therefore,
the way we calculate the line entropy is an important factor
to affect the performance of our approach. For a given line,

TABLE 7
The Performance Without Context Learning Model versus Enhanced Model

Project Top-1 accuracy Top-5 accuracy MRR MAP

WC Original Improve WC Original Improve WC Original Improve WC Original Improve

Activemq 0.3819 0.4070 6.58% 0.6147 0.6348 3.27% 0.4930 0.5117 3.79% 0.4612 0.4749 2.96%
Closure-compiler 0.2723 0.2774 1.89% 0.5188 0.4983 -3.96% 0.3932 0.3933 0.04% 0.3687 0.3718 0.85%
Deeplearning4j 0.2734 0.3184 16.43% 0.5566 0.5908 6.14% 0.4100 0.4464 8.88% 0.3588 0.3746 4.41%
Druid 0.1798 0.1966 9.38% 0.4466 0.4663 4.40% 0.3101 0.3297 6.32% 0.2837 0.2975 4.89%
Flink 0.2422 0.2445 0.94% 0.4655 0.4761 2.28% 0.3515 0.3584 1.95% 0.2866 0.2894 0.98%
Graylog2-server 0.3678 0.3742 1.74% 0.6807 0.6731 -1.13% 0.5058 0.5077 0.37% 0.4541 0.4503 -0.84%
Jenkins 0.3699 0.3748 1.31% 0.6563 0.6699 2.07% 0.5064 0.5149 1.67% 0.4714 0.4792 1.66%
Jetty 0.2498 0.2773 11.03% 0.5271 0.5427 2.96% 0.3797 0.4022 5.94% 0.3364 0.3537 5.12%
Jitsi 0.3680 0.3634 -1.24% 0.6715 0.6798 1.24% 0.5073 0.5043 -0.60% 0.4451 0.4425 -0.60%
Jmeter 0.4964 0.4980 0.32% 0.7834 0.7968 1.72% 0.6241 0.6285 0.71% 0.5986 0.6048 1.03%
Libgdx 0.3662 0.3711 1.35% 0.6289 0.6568 4.44% 0.4898 0.4981 1.70% 0.4487 0.4582 2.12%
Robolectric 0.2368 0.2536 7.07% 0.5144 0.5383 4.65% 0.3693 0.3851 4.27% 0.3247 0.3301 1.66%
Storm 0.1845 0.1748 -5.26% 0.4466 0.3689 -17.39% 0.2988 0.2789 -6.68% 0.2382 0.2338 -1.84%
H2o 0.2825 0.3057 8.20% 0.5517 0.5954 7.92% 0.4143 0.4427 6.86% 0.3770 0.3996 5.99%

average 0.3068 0.3169 3.28% 0.5778 0.5849 1.23% 0.4338 0.4430 2.13% 0.3905 0.3972 1.71%
p-value <0.001 <0.001 <0.001 <0.001
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it is intuitive to represent the line entropy by averaging the
entropy of all tokens within this line, In our preliminary
study, we employed this calculation method for DEEPDL.
However, there are some other ways to estimate the line
entropy. For example, a common way is to use the max
entropy as the representation. Yan et al. propose that sum
average with max entropy is useful for describing the entire
naturalness of the line, especially when the max entropy of
different lines might be equal. To investigate the perfor-
mance of our approach under different line entropy calcula-
tion methods, we combine the average entropy and max
entropy as follows

HpðsÞ ¼ 1

jsj
Xjsj
n¼1

HpðtiÞ þmaxðHpðt1Þ;hellip;HpðtsÞÞ

(12)

Table 8 presents the performance of our approach with
respect to the three different line entropy calculating meth-
ods. From the table, we can see that the average entropy
method can achieve a better performance in most of the
cases, and average entropy method outperforms the other
method by a large margin in average. This is the reason
why we choose average entropy as the line entropy calculat-
ing method for our approach.

7.2 Time Efficiency

To analyze the complexity of our proposed model, DEEPDL,
we further measure the time complexity of DEEPDL in terms
of training and application process. Considering Yan’s
approach is highly efficient for JIT defect localization, we
compare DEEPDL with Yan’s approach for time efficiency
analysis. In particular, regarding the model training pro-
cess, we record the time cost for training our DEEPDL model
and Yan’s approach on each selected project respectively.
Regarding the model application process, we sequentially
input the commits in the test set to the model and record the
time it takes to obtain the results. To reduce the bias of the
experimental results, we repeat the testing process 5 times
on each project and calculate the average time for

processing a buggy commit. Both models are trained and
tested on the same machine, which contains an Intel i9-
9900k CPU and four RTX 2080Ti GPU.

Table 9 shows the results of our time cost experiment.
From the table, we can observe the following points: (i)
Yan’s approach is highly efficient for training and testing.
For example, it costs only 25s for training a project and 5ms
for checking a buggy commit, this is reasonable because
Yan’s approach uses the n-gram language model to estimate
the naturalness of the source code, which requires little
computing resources and calculation time. (ii) The time cost
of DEEPDL is mostly for training process. DEEPDL takes
1,660s on average for training a project, which is much
slower than Yan’s approach. This is because DEEPDL is
based on the neural language model, which is heavily
dependent on the sizes of the source code database. How-
ever, we argue that since training DEEPDL is a one-time cost,
after the training process is completed, the trained DEEPDL
model can be easily loaded and reused. (iii) The average
application time of DEEPDL only costs 8ms, which means
DEEPDL takes 8ms on average to check a given commit. The
gap between our model and Yan’s approach is 3ms for
application, which is difficult to notice the time difference
between the two models in actual applications. Considering
that checking a buggy commit using DEEPDL is highly effi-
cient, we argue that DEEPDL is efficient enough for practical
use.

7.3 Impact of Different Tokenizer

One of the key challenges in JIT defect localization is the
out-of-vocabulary (OOV) problem. To alleviate the OOV
problem, we adopt the BPE algorithm for tokenizing the
source code. Two advantages can be obtained by employing
the BPE algorithm as the tokenizer: (i) The BPE tokenizer
can alleviate the OOV problem in the testing set, (ii) The
BPE tokenizer can greatly reduce the source code vocabu-
lary size. To quantitatively investigate the effectiveness of
using BPE tokenizer for solving the OOV problem, we

TABLE 8
The Performance of Different Methods for Calculating the Line Entropy

Project Top-1 accuracy Top-5 accuracy MRR MAP

Avg+Max Max Avg Avg+Max Max Avg Avg+Max Max Avg Avg+Max Max Avg

Activemq 0.3836 0.3769 0.4070 0.6131 0.5829 0.6348 0.4939 0.4757 0.5117 0.4628 0.4452 0.4749
Closure-compiler 0.2723 0.2654 0.2774 0.5257 0.5240 0.4983 0.3979 0.3909 0.3933 0.3762 0.3677 0.3718
Deeplearning4j 0.2861 0.2539 0.3184 0.5771 0.5273 0.5908 0.4199 0.3848 0.4464 0.3565 0.3280 0.3746
Druid 0.1910 0.1573 0.1966 0.4466 0.4017 0.4663 0.3162 0.2782 0.3297 0.2819 0.2563 0.2975
Flink 0.2187 0.1913 0.2445 0.4351 0.3933 0.4761 0.3314 0.2965 0.3584 0.2710 0.2500 0.2894
Graylog2-server 0.3436 0.3333 0.3742 0.6450 0.6143 0.6731 0.4860 0.4644 0.5077 0.4415 0.4221 0.4503
Jenkins 0.3835 0.3485 0.3748 0.6650 0.6447 0.6699 0.5139 0.4861 0.5149 0.4776 0.4548 0.4792
Jetty 0.2626 0.2323 0.2773 0.5124 0.4830 0.5427 0.3840 0.3586 0.4022 0.3366 0.3186 0.3537
Jitsi 0.3627 0.3323 0.3634 0.6707 0.6396 0.6798 0.4983 0.4727 0.5043 0.4362 0.4186 0.4425
Jmeter 0.4949 0.4648 0.4980 0.7794 0.7502 0.7968 0.6219 0.5944 0.6285 0.5938 0.5679 0.6048
Libgdx 0.3432 0.3350 0.3711 0.6371 0.6141 0.6568 0.4748 0.4625 0.4981 0.4444 0.4265 0.4582
Robolectric 0.2464 0.2273 0.2536 0.5144 0.4665 0.5383 0.3762 0.3458 0.3851 0.3183 0.2946 0.3301
Storm 0.1650 0.1456 0.1748 0.4078 0.3883 0.3689 0.2872 0.2612 0.2789 0.2397 0.2200 0.2338
H2o 0.2977 0.2549 0.3057 0.5927 0.5294 0.5954 0.4345 0.3847 0.4427 0.3900 0.3474 0.3996

average 0.3037 0.2799 0.3169 0.5730 0.5400 0.5849 0.4311 0.4040 0.4430 0.3876 0.3655 0.3972
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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counted the number of OOV words and the vocabulary size
by using BPE tokenizer and the traditional tokenizer.

Table 10 shows the results of adopting different token-
izers for tokenizing source code. From the table, several
points stand out: (i) By applying the BPE tokenizer instead
of the traditional tokenizer in data processing step, the
vocabulary size of the source code sharply decreases from
43,410 to 5,809 on average, which shows the ability of our
approach for reducing the vocabulary size. (ii) The vocabu-
lary size of the traditional tokenizer heavily depends on the
specific project, while the BPE tokenizer can keep a rela-
tively small vocabulary size. For example, the maximum
and minimum vocabulary size of using traditional tokenizer
are 84,875 and 25,253 respectively, while by using BPE
tokenizer, the maximum and minimum vocabulary size are
6,367 and 5,427 respectively. This shows the robustness of
BPE tokenizer for maintaining a stable code vocabulary. (iii)
The advantage of using BPE tokenizer for solving the OOV
problem is more obvious. For example, the average number
OOV tokens in the test set is 556 by applying the BPE token-
izer, this number rockets up to 242,195 by using the tradi-
tional tokenizer. This further confirms the power of the BPE
tokenizer for alleviating the OOV problem.

8 RELATED WORK

We divide our related work into three parts: defect localiza-
tion, Just-in-Time defect localization and deep learning in
defect prediction.

8.1 Defect Localization

8.1.1 Program Spectrum-Based Techniques

A program spectrum describes the execution information of
a program from certain perspectives, which can be used to
track program behavior [43], [44]. Collofello and Cousins
suggested that the program spectrum can be used for soft-
ware fault localization [45]. Jones and Harrold [46] proposed
the ESHS-based similarity coefficient-based Tarantula tech-
nique that uses a suspiciousness score which is provided by

the information of successful and failed test cases to locate
buggy elements. Abreu proposed the Ochiai a similarity
coefficient-based technique [47]. It is generally considered
more effective than Tarantula. W. Eric Wong proposed a
technique using both single-fault and multi-fault programs
namedDStar, which outperforms Tarantula andOchiai tech-
niques in most cases [48]. However, spectrum-based techni-
ques require test cases that are often unavailable [7], [8], [9].

8.1.2 Machine Learning-Based Techniques

Li et al. proposed that it can be quite challenging for the tradi-
tional Learning-to-Rank algorithms to automatically identify
effective existing/latent features. They introduce a deep
learning-based approach named DeepFL to automatically
learn the most effective existing/latent features for precise
fault localization. The experimental results showDeepFL can
significantly outperform the state-of-the-art TraPT/FLUCCS
[5], [6]. Chaleshtari et al. proposed a new mutation-based
fault localization approach called SMBFL to reduce the exe-
cution cost by reducing the number of statements to be
mutated [49]. In the SMBFLmethod, the suspiciousness score
of program statements is measured based on the entropy of
their mutants. Recently, Lou et al. proposed a coverage-based
fault localization technique, Grace, which fully utilizes
detailed coverage information with graph-based representa-
tion learning [50]. But these machine learning-based techni-
ques are employed after the defect is discovered. Our defect
localization approach is applied at code check-in time.

8.2 Just-in-Time Defect Localization

Yan et al. propose a two-phase framework, i.e., Just-in-Time
defect identification and Just-in-Time defect localization
[12]. Especially the Just-in-Time defect localization phase is
the first Just-in-Time defect localization approach. They
leverage software naturalness with the N-gram model.
Their model will rank the source code lines introduced by
the new change according to their suspiciousness scores.
The source code lines ranked at the top of the list are esti-
mated as the defect location. They conduct an empirical
study on 14 open source Java projects. Their model

TABLE 9
Time Cost Analysis

Project Yan’s
Training
Time /s

Yan’s
Application
Time /s

DeepDL
Training
Time /s

DeepDL
Application
Time /s

Activemq 23 0.004 2437 0.009
Closure-
compiler

26 0.005 1873 0.007

Deeplearning4j 30 0.005 2621 0.008
Druid 23 0.004 972 0.007
Flink 25 0.005 5312 0.008
Graylog2-
server

23 0.005 1135 0.007

Jenkins 25 0.004 887 0.007
Jetty.project 26 0.006 1175 0.007
Jitsi 23 0.006 1378 0.007
Jmeter 24 0.007 687 0.008
Libgdx 27 0.005 1206 0.007
Robolectric 23 0.005 762 0.008
Storm 23 0.005 1456 0.007
H2o 26 0.008 1351 0.008

Average 25 0.005 1660 0.008

TABLE 10
The Performance of Different Tokenizer

Project Vocabulary Size OOV in Test Set

Traditional BPE Traditional BPE

Activemq 38,900 5,581 148,879 109
Closure-compiler 42,979 5,493 127,066 265
Deeplearning4j 44,841 6,367 349,601 144
Druid 27,650 5,758 289,007 575
Flink 84,875 6,192 416,437 203
Graylog2-server 28,253 5,646 157,463 1271
Jenkins 32,296 5,855 260,513 234
Jetty.project 63,688 5,474 320,502 677
Jitsi 53,360 6,192 154,862 604
Jmeter 30,861 5,999 68,134 231
Libgdx 49,825 5,726 208,954 1435
Robolectric 32,864 6,082 211,605 537
Storm 30,086 5,427 226,368 966
H2o 47,268 5,533 451,340 538
Average 43,410 5,809 242,195 556
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outperforms the PMD [51] (PMD is a commonly used static
bug-finder tool and has been used in prior related studies,
such as “Software defect prediction via convolutional neu-
ral network”. PMD produces line-level warnings and
assigns a priority for each warning.) in terms of Top-1 accu-
racy, Top-5 accuracy, MAP and MRR measures.

Our work is inspired by their work that locates buggy
programs prior to the appearance of the defect symptoms.
Yan’s method use N-gram as the language model. Although
they have fine-tuned the model, there are still many short-
comings of their model (e.g., containing many OOV prob-
lems, localness of the source code are not considered).
Therefore, we can make more improvements in the Just-in-
Time defect localization field. So we proposed a new model
and the experimental results also prove that our approach
outperforms Yan’s.

8.3 Deep Learning in Source Code

8.3.1 Deep Learning in Defect Prediction

Deep learning algorithms have been adopted to improve
research tasks in software engineering. Yang et al. propose a
defect prediction model that leverages deep learning to gen-
erate new features from existing ones and then use these
new features [10]. They used a Deep Belief Network (DBN)
to generate features from 14 traditional change level fea-
tures. Li et al. propose a framework called Defect Prediction
via Convolutional Neural Network (DP-CNN) [11]. They
extract token vectors based on the programs’ Abstract Syn-
tax Trees (ASTs) and feed the numerical vectors into DP-
CNN to automatically learn semantic and structural fea-
tures of programs. Finally, They combine the learned fea-
tures with traditional hand-crafted features to predict
defect. Wang et. alleverage Deep Belief Network (DBN) to
automatically learn semantic features from token vectors
extracted from programs’ Abstract Syntax Trees (ASTs) [52].

Despite the above techniques being successfully used in
defect prediction, there is no attempt yet at applying deep
learning methods to Just-in-Time defect localization. Thus,
in this paper, we leverage the deep learning based Seq2Seq
model to Just-in-Time defect localization.

8.3.2 Deep Learning in Automatic Program Repair

SEQUENCER proposed by Chen et al. [53], CoCoNuT pro-
posed by Lutellier et al. [54] and CURE proposed by Jiang
et al. [55], have been developed to automatically repair
source code. They all apply sequence-to-sequence model to
fix bugs. However, our usage of sequence-to-sequence
model is different. DEEPDL analyzes the rationality (natural-
ness) of the specific code line based on this line and its con-
text and gives a risk score of suspicious buggy code lines.

8.3.3 Deep Learning in Code Representation

There are many papers on the representation of source code
[17], [56], [57], [58], [59]. Code2vec [56] is an example of
learning distributed representations of source code. It repre-
sents snippets of code as continuous distributed vectors.
Besides, Alon et al. proposed code2seq [57], which leverages
the syntactic structure of programming languages to encode
source code. Hoang et al. proposed CC2Vec [17], which

produces a distributed representation of code changes.
Although these studies completed the code representation
task, they cannot complete the JIT defect location task well.
DEEPDL learns the associations between clean code and its
context to calculate the risk of code that contains bugs.

9 CONCLUSION AND FUTURE WORK

We propose a novel approach, DEEPDL, to locate buggy
source code lines in a defect change at check-in time.
DEEPDL takes added code lines in the defect change as
input. Then DEEPDL will assign a suspiciousness score to
each code line and sort these code lines in descending order
of this score. The source code lines at the top of the list are
considered to be a possible defect location. Our experimen-
tal results show that DEEPDL outperforms the state-of-the-
art approach and achieves better results in terms of four
ranking measures. In future work, we plan to improve the
effectiveness of our proposed approach by adding more
information (e.g., source code history) to the model. We also
plan to apply our proposed approach to other programming
languages (e.g., C#, Python, etc). We want to evaluate our
approach with developers to see if it helps them address
just-in-time detected defects.
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