
296 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 2, FEBRUARY 2024

Federated Learning for Software Engineering:
A Case Study of Code Clone Detection

and Defect Prediction
Yanming Yang , Xing Hu , Member, IEEE, Zhipeng Gao , Jinfu Chen , Chao Ni ,

Xin Xia , Member, IEEE, and David Lo , Fellow, IEEE

Abstract—In various research domains, artificial intelligence
(AI) has gained significant prominence, leading to the develop-
ment of numerous learning-based models in research laborato-
ries, which are evaluated using benchmark datasets. While the
models proposed in previous studies may demonstrate satisfactory
performance on benchmark datasets, translating academic find-
ings into practical applications for industry practitioners presents
challenges. This can entail either the direct adoption of trained
academic models into industrial applications, leading to a per-
formance decrease, or retraining models with industrial data,
a task often hindered by insufficient data instances or skewed
data distributions. Real-world industrial data is typically sig-
nificantly more intricate than benchmark datasets, frequently
exhibiting data-skewing issues, such as label distribution skews
and quantity skews. Furthermore, accessing industrial data, par-
ticularly source code, can prove challenging for Software En-
gineering (SE) researchers due to privacy policies. This limita-
tion hinders SE researchers’ ability to gain insights into indus-
try developers’ concerns and subsequently enhance their pro-
posed models. To bridge the divide between academic models
and industrial applications, we introduce a federated learning
(FL)-based framework called ALMITY. Our aim is to simplify
the process of implementing research findings into practical use
for both SE researchers and industry developers. ALMITY en-
hances model performance on sensitive skewed data distributions
while ensuring data privacy and security. It introduces an inno-
vative aggregation strategy that takes into account three key at-
tributes: data scale, data balance, and minority class learnability.
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This strategy is employed to refine model parameters, thereby
enhancing model performance on sensitive skewed datasets. In
our evaluation, we employ two well-established SE tasks, i.e., code
clone detection and defect prediction, as evaluation tasks. We
compare the performance of ALMITY on both machine learning
(ML) and deep learning (DL) models against two mainstream
training methods, specifically the Centralized Training Method
(CTM) and Vanilla Federated Learning (VFL), to validate the
effectiveness and generalizability of ALMITY. Our experimental
results demonstrate that our framework is not only feasible but
also practical in real-world scenarios. ALMITY consistently en-
hances the performance of learning-based models, outperforming
baseline training methods across all types of data distributions.

Index Terms—Federated learning, parameter aggregation
strategy, skewed data distribution, code clone detection, defect
prediction.

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) has exhibited its formidable
prowess in a wide range of research domains, including

computer vision [1], speech recognition [2], natural language
processing [3], and software engineering [4], [5], [6]. How-
ever, learning-based models may encounter challenges when
it comes to effective deployment and generalization of their
performance in real-world scenarios [7]. This is often due to
their conventional training and evaluation solely on specific
benchmark datasets, limiting their ability to grasp the nuanced
complexities, such as skewed data distributions, commonly en-
countered in industrial applications [7]. While Software En-
gineering (SE) researchers have extensively employed vari-
ous AI techniques to augment developers’ productivity, im-
prove software system quality, and enhance decision-making,
a notable gap continues to exist between the outcomes of SE
academic research and their practical implementation in real-
world industrial settings [8]. This disparity manifests in two
primary facets:

1) Due to the data-skewing problem, utilizing academic
learning-based models, including machine learning (ML) and
deep learning (DL) models, in practice is often ineffective
for SE industry practitioners [9]. Real-world industrial data
significantly differs from academic benchmarks in terms of
volume, variety, velocity, and quality [9]. Academic bench-
mark datasets are typically derived from general open-source
projects (e.g., Apache) and/or platforms (e.g., GitHub), whereas
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industrial data is organization-specific, exhibiting distinct data
distribution patterns. In various SE fields, industrial datasets
often face data-skewing challenges [10]. The two most preva-
lent data skews for industrial datasets are label distribution
skew (imbalanced datasets) and quantity skew (datasets with
varying scales) [11]. Specifically, consider the scenario of two
companies: one being a large-scale corporation and the other a
small-scale enterprise. Both have the shared objective of train-
ing a learning-based clone detector capable of autonomously
identifying cloned code within their respective software prod-
ucts. However, a substantial scale disparity exists between these
two companies, with the large company possessing a code vol-
ume approximately 1000 times greater than that of the smaller
one. This discrepancy underscores the presence of a quantity
skew within their datasets. Furthermore, upon reviewing their
code, both companies observe a common pattern: while they
acknowledge the existence of a substantial amount of cloned
code, these clones only constitute a small fraction, typically
ranging about 20%, when compared to the total code volume.
This phenomenon is referred to as label distribution skew.

Given the disparity in data distribution between academic and
industrial datasets, adapting well-trained academic models to
real-world industrial projects becomes challenging. Note that
based on the aforementioned findings, our study examines a
dataset’s data distribution from two perspectives: data scale and
data balance degree. For instance, researchers [12] have noted
that state-of-the-art academic models exhibit poor performance
on industry projects, resulting in a significant performance drop
of over 30%. Besides, industry practitioners frequently face
constraints in terms of time and cost, making it challenging
for them to establish an industrial benchmark dataset on their
own. This is especially true for small-scale companies and
low-resource organizations that struggle to create sufficiently
large datasets for model training. However, traditional training
methods prove inadequate in addressing poor model perfor-
mance arising from dataset skewness and the data hunger prob-
lem. While federated learning (FL), a state-of-the-art training
method, can aggregate multiple small-scale datasets to train
a learning-based model, it is unable to address the issue of
low performance caused by skewed datasets. This limitation
arises from its aggregation algorithm, which solely considers
one attribute: data scale. Therefore, it is imperative to devise a
novel training method capable of enhancing model performance
on skewed datasets by integrating more informative attributes.

2) SE academic researchers face formidable challenges, if
not outright impossibility, in obtaining access to real-world
industrial data due to stringent privacy policies. Data is com-
monly recognized as the utmost valuable asset for a software
company [13]. Nevertheless, researchers frequently encounter
restricted avenues to access industrial data owing to compa-
nies’ apprehensions regarding data privacy policies. Devoid of
exposure to and utilization of real-world industrial data, SE
researchers encounter difficulties in effectively applying their
well-trained academic models to new datasets, given that the
distribution of these datasets may diverge from the benchmarks
employed during training. Moreover, this gap is exacerbated
by researchers’ frequent focus on improving the performance

of state-of-the-art models on benchmark datasets, rather than
exploring ways to leverage industrial data for model training
while avoiding data leakage. Therefore, devising a method
that overcomes data-skewing and data accessibility challenges
can prove advantageous and valuable, enabling well-trained
academic models to leverage industrial data while mitigating
concerns related to stringent data protection policies.

To mitigate the aforementioned challenges, i.e., the impact of
skewed datasets on the performance of learning-based models
and strict privacy policies, we propose ALMITY, a federated
learning (FL)-based framework, aimed at narrowing the gap
between SE academic research work and industry applications.
This framework enhances the performance of academic mod-
els on data with skewed distributions while addressing soft-
ware practitioners’ data security concerns. Specifically, akin
to vanilla FL, ALMITY operates with a central server and a
few clients, offering a promising solution for safeguarding or-
ganizations’ sensitive data. It achieves this by sharing solely
model updates (e.g., gradient information) and data distribution
information instead of raw data. Building upon vanilla FL,
ALMITY introduces a novel aggregation strategy that optimizes
the model parameters through a comprehensive integration of
the model updates based on three distinct attributes: the degree
of data balance, data scale, and minority class learnability.
By leveraging this strategy, our framework proficiently han-
dles complex and skewed data, effectively mitigating the side-
effect of such data on model performance during the model
training phase. In essence, our study offers benefits to both SE
academic researchers and industry developers seeking to apply
or adopt academic research work in industrial practice. More
specifically, for industry developers, ALMITY enables the seam-
less integration of academic research results into their concrete
applications. On the other hand, for SE academic researchers,
ALMITY enhances the robustness of DL models on industrial
datasets without violating strict data protection regulations.

We conduct extensive experiments to verify the effectiveness
of ALMITY. Specifically, we focus on multiple significant and
extensively studied SE tasks, namely clone detection and defect
prediction, as our target tasks. To ascertain the universality of
ALMITY, we utilize two distinct types of models, comprising
a DL model and a traditional ML model, for evaluating the
performance of ALMITY and the respective baselines across
each SE task. As ALMITY represents a novel training frame-
work stemming from FL, we employ two mainstream training
methods, namely the Centralized Training Method (CTM) and
the Vanilla Federated Learning Method (VFL), as baselines for
comparison. The experimental results demonstrate the effec-
tiveness of ALMITY in training well-performing ML/DL models
on academic benchmarks, affirming its feasibility to tackle SE
tasks on academic datasets. To validate the potential capabilities
of ALMITY on industrial data, we have not only constructed var-
ious datasets with diverse data distributions but also simulated
task-specific datasets on their corresponding real-world distri-
butions. In comparison to baseline training methods, ALMITY

enables trained ML/DL models to achieve superior performance
on datasets with diverse distributions. Specifically, the experi-
mental results clearly demonstrate that ALMITY outperforms the
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baselines on all types of skewed data distributions and attains
the highest G-Mean performance in both SE tasks. This un-
derscores ALMITY’s potential in enhancing model performance
on task-specific datasets while concurrently safeguarding data
privacy and security. Taking into account the three attributes
employed in our novel aggregation strategy, we have also con-
ducted comprehensive experiments to scrutinize the influence of
each attribute on the performance of ALMITY. The experimental
outcomes reveal that all three attributes yield a favorable effect
on our strategy, with each attribute fulfilling a crucial role in
varying data distribution types. In summary, our study makes
the following contributions:

1) We develop ALMITY, a novel training framework de-
signed to enhance the performance of ML/DL models on
sensitive industrial datasets and skewed data distributions
while upholding data privacy. To the best of our knowl-
edge, our study is the first work that both employs and
enhances FL techniques in SE tasks.

2) In contrast to the parameter aggregation method em-
ployed in vanilla FL, we introduce two additional es-
sential attributes, i.e., data balance and minority class
learnability, to devise a new aggregation method, thereby
enhancing ALMITY’s capability to handle skewed data.

3) We perform comprehensive experiments on both skewed
data distributions and real-world task-specific data dis-
tributions to validate ALMITY’s effectiveness in training
well-performing models. ALMITY plays a crucial role
in bridging the gap between SE academic research and
industry applications. Through our study, we aspire to
encourage more industry developers to leverage state-of-
the-art academic models to enhance their daily devel-
opment efficiency, while also motivating more academic
researchers to create practical models for industrial appli-
cations. The replication package of ALMITY is publicly
available at: [14].

4) We conduct extensive ablation experiments to explore
the impact of each attribute utilized in our parameter
aggregation strategy on ALMITY’s performance.

The remaining sections of this paper are organized as fol-
lows: Section II presents the motivating examples of our study.
Section III briefly introduces federated learning. Section IV
describes the details of ALMITY. Section V provides the exper-
imental setup, including evaluation tasks and datasets, baseline
methods, evaluation metrics, and experimental settings. Sec-
tion VI illustrates the evaluation process and presents the exper-
imental results. Section VIII and Section IX discuss the lessons
learned from this study and the limitations of our approach,
respectively. Section X reviews the related work. Finally,
Section XI concludes the paper.

II. MOTIVATING EXAMPLE

In this section, we illustrate the challenges faced by SE
researchers and industry developers when applying or adopt-
ing ML/DL models in practice. Additionally, we provide
motivating examples of using AI for SE in three realistic
application scenarios.

Fig. 1. An illustrating example in code clone detection.

Scenario one (from industry): Consider Alice, a SE re-
searcher whose area of interest lies in clone detection, and Bob,
a senior industry developer tasked with identifying code clones
to maintain code quality within his company. Inspired by the
promising performance of DL techniques, Alice devises a novel
model for detecting code clones, which, on the widely-used
BigCloneBench benchmark dataset, outperformed traditional
clone detectors like NiCad [15] and SourcererCC [16]. She is
delighted with her research results and proceeds to publish her
work in renowned SE conferences or journals. Upon reading
Alice’s paper, Bob feels encouraged to adopt this newly released
model to enhance code clone detection performance in his
daily work. After implementing the model, Bob is surprised to
discover that its performance is relatively poor when applied to
his industrial data. Through meticulous investigation, he real-
izes that his real-world industrial data differs drastically from
the benchmark dataset in terms of data distribution, including
data scale and balance. For instance, the clone ratio in the
BigCloneBench dataset is considerably higher compared to the
clone ratio in his industrial data. As illustrated in Fig. 1, the
benchmark dataset for clone detection shows that the number of
real clone pairs is 23 times higher than that of non-clone pairs.
In contrast, in industrial datasets, only 10% to 20% of code
fragments are likely to be cloned code [17], [18]. Consequently,
using a model trained solely on BigCloneBench data with-
out accounting for local data attributes becomes challenging.
Furthermore, in addition to attempting to apply Alice’s model
directly, Bob also attempts to retrain the model on his local
dataset. However, the performance remains unsatisfactory as
the model necessitates a large-scale dataset for optimization
(BigCloneBench contains over 6 million clone samples), and
it is infeasible for Bob to manually label such a vast amount of
data samples. Hence, Bob outlines his predicament and seeks
assistance and suggestions by emailing Alice.

Scenario two (from academic): Upon receiving Bob’s
email, Alice acknowledges the limitations of her proposed clone
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detection model. However, due to the unavailability of real-
world industrial data, she is unable to replicate the experi-
mental results or address the specific issues highlighted by
Bob. To develop a more reliable and practical clone detection
model suitable for real-world application, Alice recognizes the
necessity of exploring real-life data instead of solely relying
on the benchmark dataset. However, Bob faces a challenge in
granting access to sensitive data due to data privacy and security
policies. It becomes exceedingly difficult for Alice to obtain the
required access to the sensitive data for her research. Therefore,
the challenging task for Alice lies in devising a more potent
training method that considers the specific characteristics of
industrial data (e.g., data skewness and data hunger problem)
when training models, all while ensuring the preservation of
sensitive data locally.

Scenario three (with our framework): Now, suppose
that Bob and Alice adopt our framework, ALMITY. Initially,
Alice deploys a shared learning-based model on the central
server of our framework. Subsequently, Bob downloads Al-
ice’s model and proceeds to train the model locally using their
client-side industrial data. Rather than sending sensitive raw
data to Alice, ALMITY only packages some insensitive infor-
mation (including trained model parameters and the number
of data instances within each class). Specifically, clients up-
load their corresponding necessary information to the central
server. ALMITY’s central server can aggregate the parameters
of different clients through the novel parameter aggregation
strategy. Later, the server disseminates the aggregated model
parameters, which each client then utilizes to update its own
model to reach better performance. Finally, Alice provides the
model trained by ALMITY to Bob, which improves the clone
detection performance on industrial data, enhancing the model’s
robustness and generalizability in real scenarios.

III. BACKGROUND

The conventional approach to training learning-based mod-
els is centralized, where all datasets are together to train a
single model concurrently. This model trained in this method
updates its parameters after each training round. Nevertheless,
in numerous real-world training scenarios, particularly in in-
dustrial applications, datasets from various organizations or
companies cannot be amalgamated for training a learning-based
model due to the concern about data security and data privacy.
This limitation results in suboptimal industrial data utilization
and inefficiency.

To address the above issue, Federated learning [19], [20]
was introduced as an advanced distributed learning method
by Google in 2016, initially intended for transmitting pri-
vate/sensitive information across various devices [21]. Due to
its robust capabilities, federated learning has found wide appli-
cations in various areas, including autonomous driving, facial
recognition, and system anomaly detection [22], garnering sig-
nificant attention from both researchers and software practition-
ers to explore its potential applicability [23], [24].

Federated learning, as a collaboration mechanism, comprises
one central server and multiple clients. Each client can be

considered as a company or an organization and independently
trains the model on its local dataset. After completing the train-
ing rounds, clients will upload their model parameters to the
central server in preparation for server-side parameter aggre-
gation. The server adopts a parameter aggregation strategy to
generate the optimized parameter by aggregating these client-
side model parameters. Subsequently, the server distributes the
updated parameter to clients, and thus each client uses the new
model parameter to optimize its local model. The performance
of the optimized client-side models can exhibit improvements
compared to the performance achieved using traditional train-
ing methods [25], [26]. Generally, FedAvg [27] is the most
common parameter aggregation strategy in federated learning,
which solely considers the data scale of client-side datasets
to aggregate and update model parameters. The aggregation
algorithm of FedAvg is defined as follows:

ω =

K∑

k=1

nk

n
ωk (1)

Here, nk represents the count of data instances in client k, while
n signifies the total count of data instances across all clients.
ωk signifies the original model parameter within client k, and
ω stands for the updated model parameter resulting from the
aggregation of all client-side model parameters.

Upon analyzing Equation 1, it becomes evident that FedAvg
confers a heightened degree of decision-making authority and
influence to clients equipped with substantial datasets. In sim-
pler terms, the aggregated model parameter gravitates toward
the model parameter of the client boasting a large-scale dataset.
However, consider a scenario wherein a client possesses an
expansive yet notably imbalanced dataset. Unfortunately, this
client’s model parameter trained on such a heavily skewed
dataset fails to contribute effectively to the cultivation of a
well-performing model due to its significant deviation from the
optimal value. Regrettably, the FedAvg algorithm exacerbates
the propensity for the updated model parameter to align itself
with the model parameter originating from the client boasting a
considerable dataset. This inclination, in turn, steers the updated
model parameter away from its optimal value, consequently
yielding suboptimal model performance, and even exacerbates
the risk of severe model divergence on skewed datasets. Hence,
our objective is to rectify this limitation within federated learn-
ing, enhancing its suitability for SE tasks through the optimiza-
tion of the parameter aggregation strategy.

IV. METHODOLOGY

In this section, we commence by providing an overview of
ALMITY, followed by an elaboration of the framework’s details.

A. Framework Overview

Our proposed paradigm, ALMITY, harnesses the collective
potential of multiple client-side datasets to collaboratively train
a high-performing model while ensuring data privacy and secu-
rity. ALMITY comprises three pivotal phases: ① Model Initial-
ization and Training, ② Parameter Uploading and Aggregation,
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Fig. 2. The workflow of ALMITY. θ denotes the shared model in ALMITY.
Ci denotes the “Client-side model info” uploaded to the server from Client
i, including the degree of data balance αi, data scale Φi, and minority class
learnability ψi.

and ③ Model Updating and Optimization. To facilitate compre-
hension, Fig. 2 delineates the workflow of these three phases
in intricate detail, represented by the distinct red lines, purple
dotted, and yellow dotted lines.

1) Model Initialization and Training: The model initial-
ization and training phase encompass two fundamental steps:
server-side model initialization and client-side model training.

Client-side Model Initialization. For a specific SE task, we
commence by meticulously selecting a suitable learning-based
model, denoted as θ, to serve as the shared model within our
framework. This model is deployed on each client, as depicted
in Fig. 2. Each client-side model is initiated with the randomly
generated model parameter, ω0. Note that the initial model
parameters for different client-side models can be different.

Client-side Model Training. Each client is in possession
of a dataset Di with a distinct data distribution δi (as evident
from the red boxes on the client side). Different clients employ
a pre-processing technique (as indicated by the red lines on
the client side) to convert their respective datasets into a suit-
able input format for the shared model. In order to maintain
decentralization of the training data, client sides execute the
initial training round using their respective local datasets after
model initialization [28]. Note that the ALMITY framework,
characterized as a comprehensive training approach, showcases
high scalability in incorporating a wide spectrum of data pre-
processing methods for different learning-based models. This
integration effectively caters to a variety of data types inherent
to different SE tasks.

2) Parameter Uploading and Aggregation: At the heart
of ALMITY lies this pivotal phase, tasked with producing an
enhanced and updated model parameter through the amalga-
mation of parameters from all individual clients. However, the
conventional aggregation strategy employed in the VFL leads
to a degradation in model performance when confronted with
imbalanced datasets. In order to mitigate the adverse effects
of imbalanced datasets on the overarching model performance,

our aggregation strategy introduces three distinct attributes.
These attributes serve to characterize both the scale and balance
degree of client-side datasets, along with the minority class
learnability (i.e., model performance to some extent) of the
client-side models. Our proposed aggregation strategy factors in
these attributes comprehensively to update the shared model’s
parameter. Specifically, following the initial training round, the
models trained on the client-side datasets (denoted as θ1, θ2, and
θ3 in Fig. 2) exclusively transmit essential and non-sensitive
information to the central server. To guarantee data privacy
and security without the need to transmit the actual client-side
datasets, our framework, ALMITY, only necessitates a minimal
amount of information for parameter aggregation. We employ
the notation “Client-side model info, C”, C = C1, C2, . . . , Ci,
to symbolize the non-sensitive information transmitted from
clients to the server. Thus far, with regard to an individual client,
the “Client-side model info”, Ci, comprises two types of model
information: the parameters of the locally trained model (ωi)
and a set of numerical values describing the number of data
instances across each class in the corresponding dataset, i.e.,
Ci =< {ClS1, . . . , Clsn}, ωi >. Once these two categories of
information have been uploaded to the server side, the central
server can utilize the attribute calculation algorithms stored
on itself to obtain the values of three attributes our parameter
aggregation strategy needs to use (see the purple part in Fig. 2):
the data scale, data balance, and minority class learnability
attributes. Further elaboration on the calculation algorithm for
each attribute is presented in Section IV.B.3. Following the
attribute calculation step, with respect to a certain client, we
change to employ C

′

i to represent the updated version of
the client-side model information. It encompasses four dis-
tinct categories of model information: the parameters of the
locally trained model (ωi), the data scale attribute (Φi), the
data balance attribute (αi), and minority class learnability at-
tribute (Ψi); in other words, C

′

i can be expressed as the set
C

′

i =< ωi,Φi, αi,Ψi >. Utilizing the new version of client-
side model information (C

′
) as input (see the blue part in Fig.

2), our novel server-side aggregation function (g) systematically
generates the optimized model parameter (depicted as the yel-
low ω in Fig. 2). In Section IV-B, we delve into the intricacies of
our parameter aggregation strategy, elaborating on its specific
details and mechanisms.

3) Client-Side Model Updating and Optimization: Contin-
uing from the preceding phase, the server proceeds with the
dissemination of the updated parameters (depicted as the yellow
ω in Fig. 2) to the client-side models. Precisely, preceding
the next training round, every individual client employs the
received model parameter to update its respective local model.
At this juncture, all client-side models share an identical model
parameter, i.e., the aggregated model parameter. Subsequently,
these clients embark on the next training round, resulting in
the acquisition of fresh respective client-side model parameters.
At the commencement of a new training round, the above
three phases are sequentially executed once again. With the
progression of iterations, the updated model parameter steadily
converges toward an optimal solution. This iterative refine-
ment serves to alleviate the detrimental effects stemming from
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skewed datasets and contributes to elevating the performance of
client-side neural models to higher levels of proficiency. Aided
by ALMITY, every client is empowered to convert a shared
learning model into a well-trained local model through the
utilization of its own localized data, all the while upholding the
privacy of the original sensitive data.

B. Parameter Aggregation Strategy

The paramount component of our paradigm, the parameter
aggregation strategy, centers on the computation of the optimal
aggregated parameter for the shared model. This is achieved
through the astute fusion of parameters derived from distinct
client-side models, aided by the utilization of three distinct
attributes. In the next subsection, we provide an exhaustive
introduction to our aggregation algorithm.

1) Problem Formulation: For FL techniques, the overarch-
ing framework for formulating parameter aggregation strategies
is generally established as follows:

ω =
K∑

k=1

βk

β
ωk (2)

Where ωk represents the model parameter of Client k, while ω
signifies the optimized parameter of the shared model, achieved
through the aggregation of all individual client-side model pa-
rameters. The symbol βk denotes the weight allocated by an
aggregation algorithm to the model parameter of Client k. We
can find from this equation that a client-side model parame-
ter assigned a substantial weight implies its proximity to the
optimal value, and this parameter becomes a prominent refer-
ence for enhancing the overall model performance. In addition,
different aggregation strategies allocate varying weights (i.e.,
βk) to individual client models depending on the factors they
take into account. As an illustration, Equation 1 illustrates the
parameter aggregation algorithm employed in the standard FL
framework. This aggregation strategy solely takes into consid-
eration the scale of local data on the client side when assigning
weights to respective client-side models. This indicates that the
aggregated parameter resulting from this strategy closely ap-
proximates the model parameter of the client with an extensive
dataset. However, when large-scale datasets within such clients
exhibit significant imbalance, the effectiveness of this strategy
often diminishes in yielding the optimal model parameter. This,
in turn, leads to poor model performance. To address this issue,
we formulate an innovative aggregation strategy that considers
two novel factors: data balance and minority class learnability,
in addition to data scale. In the following section, we provide
a comprehensive description of the new aggregation strategy.

2) Strategy Description: Our aggregation strategy syner-
gistically integrates three attributes: data scale, degree of data
balance, and minority class learnability. These attributes collec-
tively evaluate the significance of the model parameter within
each client to the overall model performance, thereby facilitat-
ing the generation of aggregated model parameters. We hold the
belief that the combined influence of these three attributes sig-
nificantly impacts the process of aggregating client-side model
parameters.

The motivation behind introducing the data balance
attribute. Given the inclusion of an attribute in the initial
aggregation strategy, which aims to depict the scale of client-
side datasets (i.e., the quantity skew), our intuition dictates the
necessity of introducing an additional metric. This metric is
meant to measure the label distribution skew (referred to as
the data balance degree) within these datasets, acting as a com-
plementary factor to assess the quality of client-side datasets.
We believe that on the condition of two datasets with the same
data scale, a more imbalanced one should be assigned a smaller
weight during the parameter aggregation. This is because the
more imbalanced dataset plays a negative role in client-side
model performance, making its model parameters low reference
value. Therefore, our aggregation algorithm integrates the data
balance degree as a new attribute that can impact the optimal
model parameter generation.

The motivation behind introducing the minority class
learnability attribute. Besides, accounting for data scale and
data balance attributes, the learnability of the minority class
within a dataset should also be regarded as a third factor when
updating the shared model parameters. This insight arises from
the fact that the data scale and data balance alone cannot
exclusively dictate the performance of these models although
these two attributes are crucial for training well-performanced
models. Another pivotal factor influencing the performance of
learning-based models is the availability of a sufficient number
of data samples within datasets, particularly for the minority
class, in order to effectively support the accuracy of the model’s
learning process. As an illustration, considering the well-known
large-scale code clone benchmark called BigCloneBench, this
dataset comprises a significantly higher count of cloned code
pairs (6,164,953) compared to non-cloned pairs (258,574),
which is nearly 24 times larger than the number of non-cloned
pairs. In general, learning-based models trained on imbalanced
datasets struggle to acquire knowledge from the minority class,
frequently resulting in the classification of all test samples as
belonging to the majority class. However, despite the apparent
imbalance in this dataset, many learning-based clone detectors
are able to achieve exceptional performance on it. This success
can be attributed to the inclusion of a substantial number of
minority class samples within BigCloneBench, thereby facili-
tating models in getting the capacity to differentiate between
clone and non-clone code pairs. In other words, these datasets
are recognized for maintaining a substantial level of learnability
within their minority classes, enabling a multitude of models
trained on such imbalanced data to reach noteworthy levels of
performance. Therefore, expanding upon this observation, we
introduce an additional attribute referred to as “minority class
learnability”. This attribute is carefully crafted to evaluate the
influence of datasets on model performance by quantifying the
degree to which the minority class can be effectively learned
within the client-side dataset.

To validate the accuracy of our perspectives, we undertake
a user study to confirm the correlation and importance among
these three attributes in relation to the parameter aggregation
process. Specifically, we extend invitations to 11 researchers
who possess substantial expertise in utilizing learning-based
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models and have applied FL-based techniques. Initially, we
outline the workflow of the parameter aggregation strategy
employed in the conventional FL technique. Subsequently, we
highlight the limitations of this approach and introduce the
attributes (i.e., data scale, data balance, and minority class learn-
ability) that, in our view, warrant consideration when executing
parameter aggregation. In our user study, these invited 11 well-
experienced researchers need to independently evaluate the
significance of these three attributes in relation to the parame-
ter aggregation process, leveraging their professional expertise.
They are requested to assign a score, ranging from 1 to 5, to each
of the attributes for evaluation purposes. A rating of 1 indicates
the lowest importance for the evaluated attribute and a rating
of 3 indicates some degree of importance for this attribute,
whereas a rating of 5 indicates the substantial significance of
this attribute to parameter aggregation. Upon analyzing the
participants’ outcomes, we ascertain that all 11 researchers have
assigned scores of no less than 3 to these three attributes—
namely, data scale, data balance, and minority class learnability.
This indicates their collective belief in the significance of these
factors within the parameter aggregation process.

Given the paramount significance of these three attributes in
the parameter aggregation process, we incorporate each of them
equally into our aggregation strategy. Therefore, the formula-
tion of our parameter aggregation strategy is as outlined below
by integrating these three attributes:

βk = αk × Φk ×Ψk (3)

Within this equation, βk signifies the weight allocated to the
model parameter in Client k, which is determined by our ag-
gregation strategy. Meanwhile, αk reflects the extent of data
balance in the dataset of Client k. Φk symbolizes the scale of
the dataset in Client k, while Ψk encapsulates the minority class
learnability of Client k’s dataset.

3) Attributes Calculation Algorithms: In this section, we
provide a comprehensive introduction of the three aforemen-
tioned attributes utilized in our aggregation strategy, including
the data scale (Φ), data balance (α), and minority class learn-
ability (Ψ).

Data Scale Attribute (Φ). Large-scale datasets are advan-
tageous for training high-performing learning-based models.
Following this conventional wisdom, model parameters derived
from extensive client-side datasets tend to approach the optimal
parameters more closely than those from other clients. Hence,
clients with larger dataset scales should wield a more substantial
impact on the generation of updated model parameters. To
precisely compute a dataset’s scale and incorporate this attribute
into our aggregation algorithm, we employ the following equa-
tion to assess the data scale attribute Φ:

Φk =
nk

n
(4)

Here, nk signifies the number of data instances in Client k,
while n=

∑K
k=1 nk corresponds to the overall data scale across

all clients. In the formula 4, Φk signifies the dataset’s scale
proportion in Client k in relation to the collective data volume
across all clients.

Data Balance Attribute (α). Our aggregation strategy uses
the attribute α to describe the degree of data balance for each
client-side dataset. To make our strategy more universally ap-
plicable and persuasive, we employ Shannon entropy [29] to
compute the balance level of datasets, a method widely recog-
nized for measuring data balance [30]. Specifically, the balance
of a dataset can be quantified using the following measure:

αk =
H

log k
=

−
∑k

i=1
ci
n log

ci
n

log k
(5)

Assuming a dataset comprises n instances with k classes, where
each class has a size denoted as ci, the degree of balance within
this dataset can be calculated by αk. The value of αk falls within
the range of 0 to 1, with 0 signifying an extremely unbalanced
dataset and 1 indicating a well-balanced one. The greater the
value of α, the more balanced the dataset becomes.

Minority Class Learnability Attribute (Ψ). To bolster the
ability of learning-based models to distinguish between differ-
ent classes, it is advantageous for a dataset to contain as many
minority class samples as feasible. This is because a dataset
rich in minority-class instances is more likely to assist models in
characterizing instances across various classes. Therefore, such
datasets with more minority class instances should be assigned
substantial weights in the parameter aggregation process. To
accomplish this, we introduce a novel formula for assessing
the learnability of the minority class within a dataset. More
precisely, building upon our insight, we transform the measure-
ment of minority class learnability of each client into calcu-
lating the proportion of minority class instances within each
dataset accounting for the total number of this class instances
across all client-side datasets. Note that, given that ALMITY

is a unified learning framework encompassing multiple client
sides, the minority class is defined as the class with the fewest
instances among all client-side datasets. In particular, the at-
tribute of minority class learnability (Ψ) is quantified using the
following formula:

Ψk =
mck
mc

(6)

Here, mc denotes the total count of minority class instances
across all client-side datasets; mck signifies the number of
minority class instances within the dataset of Client k.

V. EXPERIMENT SETUP

In this section, we present the experimental setup, encom-
passing evaluation tasks, model selection, datasets, baselines,
and experimental settings.

A. Evaluation Downstream Tasks

We have selected two prominent SE classification tasks, i.e.,
defect prediction (DP) and code clone detection (CCD), as
our case studies for evaluating our approach. These choices
are motivated by several factors: 1) DP and CCD represent
two of the most well-established and extensively researched
SE tasks by previous studies [16], [31], [32], [33], [34]. 2)
Both DP and CCD tasks provide readily available benchmark
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datasets, such as BigCloneBench and the dataset from Devign
[35]. These datasets are widely recognized and employed by
academic SE researchers. 3) There exists a substantial diver-
gence in data distribution between real-world data and the com-
monly used benchmarks in DP and CCD [17], [36]. This diver-
gence emphasizes the significance of evaluating our approach
across these tasks, as it highlights the challenges posed by
real-world data.

Defect prediction Task. This task aims to predict vul-
nerable code fragments from software projects, which can be
formulated as a binary classification problem. Let a dataset can
be defined as 〈(ci, yi)|ci ∈ C, yi ∈ Y 〉(i ∈ 1, 2, ..., n), where C
represents code fragments or metrics, Y = {0, 1} denotes the
label set, and n is the number of samples. Similarly, for each
code fragment ci, yi represents whether ci is vulnerable (label
1) or not (label 0).

Code clone detection task. This task aims to detect code
fragments that are similar to each other or implement the same
functionality. In clone detection studies, a code pair is com-
monly represented by two vectors v1 and v2. The distance
between the two code fragments can be measured by esti-
mating their distance d= |v1− v2|. Thus we can assign the
output y = sigmoid(x) ∈ [0, 1] according to their similarity,
where x=Wod+ bo. The output y represents the probabil-
ity of whether two code fragments are clones (label 1) or
not (label 0).

B. Model Selection

To assess the generalizability and effectiveness of ALMITY

across various types of learning-based models, we select di-
verse models, comprising one DL-based and one ML-based
model, to evaluate the performance of ALMITY in these two
evaluation tasks.

DL-based model. Recently, the field of deep learning has
seen significant advancements with the emergence of large-
scale pre-trained models such as BERT [37]. SE researchers
have also explored the effectiveness of applying these pre-
trained models to various SE tasks, including clone detection
[38] and defect prediction [39]. Drawing inspiration from the
remarkable success of BERT, Microsoft researchers have devel-
oped a large-scale pre-trained model called CodeBERT [37].
CodeBERT is designed to handle both natural language and
programming language tasks, making it a versatile choice as the
foundation for various downstream SE tasks, including clone
detection and defect prediction. In this study, we utilize Code-
BERT as the basis for our code clone detector [40] and defect
predictor [35] for the two aforementioned evaluation tasks.

ML-based model. As a versatile training framework,
ALMITY can be effectively applied to ML-based models as
well. To demonstrate this, we employ one of the most widely
utilized ML techniques, Support Vector Machine (SVM), in
our study and utilize SVM for defect prediction and clone
detection tasks, respectively. Our selection of SVM is driven
by two reasons: 1) In previous studies [41], [42], SVM,
as a classification algorithm, has been utilized in both of
these evaluation tasks. 2) Among various ML techniques,

SVM stands out as one of the algorithms compatible with an
FL-based framework.

C. Datasets

During the evaluation phase, our aim is to employ ALMITY

for training DL-based and ML-based models for two SE tasks,
thereby verifying the effectiveness of ALMITY. In pursuit of this
objective and to showcase the generalizability of ALMITY, we
select two distinct datasets for the defect prediction and clone
detection tasks, respectively. In each SE task, one dataset is allo-
cated for training the DL-based model, while the other dataset
is designated for training the ML-based model. The datasets
used in our study originate from diverse sources, encompassing
different real-world projects, code sourced from international
programming competitions, etc.

1) Defect Prediction:
Dataset used in training the DL model. CodeXGLUE, as

one of the most well-known benchmarks, includes a commonly
used dataset for defect prediction. The dataset has been applied
in many previous studies [35] and contains 27,318 function-
level code fragments. 12,460 code fragments are vulnerable and
the remaining code fragments are not.

Dataset used in training the ML model. PROMISE can
be recognized as one of the most frequently employed defect
prediction datasets. This dataset we select includes defect data
from 11 distinct Java projects in 41 different versions [43].

2) Clone Detection:
Dataset used in training the DL model. We employ the

widely-used clone dataset known as BigCloneBench (BCB)
[44] for clone detection. BigCloneBench encompasses estab-
lished clones sourced from the IJaDataset repository, with each
code fragment pair meticulously categorized into their respec-
tive clone types. BigCloneBench comprises a vast collection
of over 6,000,000 function-level clone pairs extracted from
25,000 systems. This dataset includes 16,168 Type-I clones,
3,733 Type-II clones, 11,286 strongly Type-III clones, 53,880
moderately Type-III clones, along with 6,079,886 instances
of weakly Type-III & Type-IV clones at the method level.
Therefore, in order to assess the effectiveness of ALMITY on a
smaller-scale dataset, we adopt the approach presented in [40],
which involves scaling down the BCB benchmark to mimic
real-world dataset conditions. In our commitment to maintain-
ing the integrity and accuracy of the evaluation, we adhere
to the dataset distribution employed in the prior study [40],
reducing the dataset’s scale until it closely resembles the defect
prediction dataset in terms of data scale. Finally, our study
employs the dataset that aligns with the dataset in CodeXGULE
[40], comprising a total of 25,027 code pairs, of which 12,523
pairs are identified as clones.

Dataset used in training the ML model. To assess the
generalizability and effectiveness of ALMITY across diverse
datasets, we introduce another dataset - Google Code Jam
dataset [45]. This dataset is a also well-established choice in the
field of code clone detection and serves as an essential bench-
mark for our assessment [5], [46]. Google Code Jam comprises
programs gathered from an online programming competition
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hosted by Google. For the same rationale, we continue to adopt
the approach outlined in [40] to reduce the dataset’s scale,
resulting in 29, 542 code pairs with 13, 542 clone pairs.

D. Baselines

Given that ALMITY represents an innovative Federated Learn-
ing (FL)-based training framework, we consider the following
two training methods as baselines in our study:

i) Centralized Training Method (CTM). It refers to the tra-
ditional training method, i.e., training the model locally.

ii) Vanilla Federated Learning Framework (VFL) [47]. It
refers to the typical federated learning framework with
Fedavg aggregation strategy [27].

Moreover, recognizing that numerous techniques, such as
oversampling, can effectively mitigate skewness by adjusting
dataset instances and bolstering local models, we integrate
the oversampling technique into all different training methods.
Consequently, in order to maintain as much consistency as
possible in input data across different training methods, we
proceed to evaluate the performance of ALMITY, VFL, and
CTM when incorporating the oversampling technique respec-
tively, i.e., ALMITY + oversampling, VFL + oversampling, and
CTM + oversampling. Note that the reason for not adopting
the undersampling technique is that it reduces a portion of data
instances from the original training dataset to achieve balance,
which may result in the loss of valuable data instances.

E. Experimental Settings

CTM, FL, and ALMITY are all trained on a Linux server
equipped with two NVIDIA GeForce RTX 3090Ti GPUs, each
boasting 24 GB of memory. Throughout the training process,
we adhere to the parameter configurations detailed in previous
research [40], including a batch size and learning rate set at 2−5,
etc. To ensure a fair and equitable comparison, all three training
methods undergo an identical number of training rounds. In our
study, we allocate 80% of the data instances within each client-
side dataset for training, while reserving 10% for validation
and 10% for testing, in accordance with established practices
[40]. For a comprehensive breakdown of the parameter settings,
please refer to our replication package.

VI. EXPERIMENTAL RESULTS

To better understand ALMITY’s effectiveness in training well-
performed models, we analyze our evaluation results by ad-
dressing four research questions (RQs):

1) RQ-1: How effective is ALMITY on academic datasets
across various SE tasks?

2) RQ-2: Can ALMITY outperform baselines on diverse
skewed data distributions?

3) RQ-3: How do individual attributes affect ALMITY’s
effectiveness?

A. RQ-1: How Effective Is ALMITY on Academic Datasets
Across Various SE Tasks?

Motivation. To the best of our knowledge, federated learn-
ing techniques have seldom been applied to conventional SE

tasks in previous research. Hence, this RQ seeks to accomplish
two main objectives: 1) Assess the viability and practicality of
employing FL-based approaches, including FL and ALMITY,
for addressing traditional SE tasks. 2) Examine and compare
the performance of various training methods when applied to
academic datasets. We conduct experiments in two extensively
studied SE tasks, i.e., code clone detection and defect predic-
tion, to validate the effectiveness and efficiency of ALMITY.

Method. In contrast to CTM, both FL and ALMITY repre-
sent distributed training methods, featuring a single server and
multiple clients. In this RQ, each client serves as a simulated
participant, holding a segment of the academic dataset. All
participants collaborate by contributing their local datasets to
collectively train a learning-based model while ensuring data
privacy is upheld. In our experiments, the number of clients
(N ), varies from two to six to evaluate the performance of
different training methods due to computational resource con-
straints. Using four clients as an illustrative case, our experi-
mental procedure adheres to the original data balance criteria,
partitioning the complete academic dataset into four equally
sized client-side datasets. Subsequently, each client-side dataset
is further segmented into training, validation, and testing sub-
sets according to an 8:1:1 ratio. It is important to note that the
scale of the client-side datasets utilized for local model training
fluctuates depending on the number of clients involved. For
instance, when N = 4, each client employs one-quarter of the
entire dataset to construct its local model. Furthermore, in order
to ensure an equitable performance comparison between the
CTM and FL-based methods, we provide not only the model’s
average performance trained on client-side datasets using the
CTM method (i.e., Clientclient in Table I and Table II) but also
the performance achieved by the model trained on the complete
dataset (i.e., Clientall in Table I and Table II).

Furthermore, to comprehensively assess the effectiveness of
ALMITY, we extend our evaluation beyond DL models to en-
compass ML models. We conduct comparative experiments
to gauge how different training methods impact the perfor-
mance of ML models. Since many ML models rely on feature
engineering, we find it necessary to extract a set of features
from ML-based datasets, specifically for defect prediction and
clone detection tasks. Handling the defect dataset is relatively
straightforward, as it is already metric-based, encompassing 22
distinct defect metrics. However, unlike defect datasets, metric-
based clone detection datasets are scarce. This scarcity arises
because clone detectors primarily assess whether a pair of code
fragments are cloned by comparing their source code, resulting
in datasets primarily composed of code fragments rather than
code metrics. While a few prior studies [48] have proposed
metrics for clone detection, these metrics often struggle to
fully capture both code semantics and structure and are not
uniform in different studies. In light of this, our study opts to
consider the representation of a code fragment generated by
GraphCodeBERT [38], which excels in encapsulating both code
semantics and structure, as the code metric used for training
an ML-based clone detector. This representation allows us to
delve into the evaluation of ALMITY on the clone detection task
more effectively.
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TABLE I
THE PERFORMANCE OF DIFFERENT TRAINING METHODS IN THE CONTEXT OF CODE CLONE DETECTION (CCD) TASK

Model #Client 2

DL

Method VFL ALMITY CTMclient CTMall VFL+Oversampling ALMITY+Oversampling CTMclient+Oversampling CTMall+Oversampling

Precision (%) 97.7 97.1 77.7 88.0 96.6 98.3 79.2 90.5
Recall (%) 90.8 92.6 77.1 93.9 93.1 94.0 85.0 95.8

F1-score (%) 94.1 94.8 77.4 90.1 96.1 94.8 82.3 92.7
AUC (%) 94.5 95.1 78.5 91.2 95.2 96.3 83.2 93.6

G-Mean (%) 94.4 95.0 78.5 91.2 95.1 96.3 83.2 93.5
Pfa (%) 2.4 1.9 20.0 21.4 2.9 1.4 21.0 2.5

ML

Precision (%) 56.5 58.5 60.6 45.2 53.0 54.6 59.7 58.3
Recall (%) 32.8 46.6 24.2 38.0 36.1 61.6 24.6 35.0

F1-score (%) 41.5 51.9 34.5 41.0 43.0 57.9 34.9 49.9
AUC (%) 55.7 59.3 55.4 53.3 54.5 59.1 55.3 56.7

G-Mean (%) 50.8 53.9 45.8 51.2 51.3 54.1 46.0 51.4
Pfa (%) 21.4 28.0 13.3 26.3 27.0 33.3 14.1 21.5

#Client 3
Method VFL ALMITY CTMclient CTMall VFL+OS ALMITY+OS CTMclient+OS CTMall+OS

DL

Precision (%) 93.8 97.8 70.1 90.0 95.0 96.5 66.7 90.5
Recall (%) 91.4 92.2 68.1 87.2 93.2 93.7 70.0 92.7

F1-score (%) 93.1 95.0 67.0 88.5 92.4 95.2 68.3 91.6
AUC (%) 92.6 95.2 69.2 90.2 93.0 95.5 70.2 93.0

G-Mean (%) 92.6 95.2 69.2 90.2 93.0 95.4 70.2 93.0
Pfa (%) 4.2 1.7 29.7 2.7 7.2 2.9 25.8 4.8

ML

Precision (%) 64.2 50.4 66.3 45.2 51.4 55.1 57.4 53.0
Recall (%) 25.5 64.7 19.2 36.6 32.8 54.4 20.1 36.1

F1-score (%) 36.5 56.7 29.8 40.5 40.0 54.8 29.8 43.0
AUC (%) 55.4 56.7 52.2 49.5 53.3 58.5 53.7 54.5

G-Mean (%) 47.4 50.7 42.0 47.8 49.2 53.3 41.9 51.3
Pfa (%) 12.0 27.2 13.1 37.6 26.3 37.5 12.6 27.0

#Client 4
Method VFL ALMITY CTMclient CTMall VFL+OS ALMITY+OS CTMclient+OS CTMall+OS

DL

Precision (%) 92.3 98.2 57.2 83.5 93.0 97.2 64.1 91.4
Recall (%) 91.3 92.4 64.6 95.2 92.0 95.1 60.8 93.9

F1-score (%) 91.8 95.2 60.7 88.9 92.5 96.1 64.1 91.4
AUC (%) 92.4 95.4 61.9 89.6 93.1 96.4 68.2 92.6

G-Mean (%) 92.4 95.4 61.9 90.6 93.1 96.4 68.2 92.6
Pfa (%) 6.4 1.4 40.7 6.0 5.8 2.3 24.3 1.6

ML

Precision (%) 57.9 58.3 66.1 65.3 55.0 54.3 60.0 56.0
Recall (%) 44.7 53.0 20.0 39.5 40.0 59.8 18.7 36.3

F1-score (%) 50.4 55.5 30.8 40.1 46.6 57.0 57.0 44.1
AUC (%) 58.6 60.5 54.7 55.4 56.7 58.6 54.1 55.5

G-Mean (%) 56.9 60.0 42.8 48.2 54.2 58.6 40.9 52.5
Pfa (%) 27.5 22.0 4.0 10.7 26.7 32.5 10.5 24.2

#Client 5
Method VFL ALMITY CTMclient CTMall VFL+OS ALMITY+OS CTMclient+OS CTMall+OS

DL

Precision (%) 93.0 96.9 55.9 90.5 95.1 97.7 60.4 89.9
Recall (%) 86.1 94.0 76.1 83.1 85.7 93.5 61.5 94.5

F1-score (%) 89.4 95.4 64.5 86.6 90.2 95.6 60.9 92.1
AUC (%) 90.3 95.7 62.6 89.0 91.0 95.8 63.7 93.2

G-Mean (%) 90.2 95.7 61.1 88.8 90.2 95.8 63.6 93.2
Pfa (%) 5.5 2.6 50.9 5.0 3.7 1.8 34.1 18.1

ML

Precision (%) 61.0 64.3 76.1 59.1 59.5 55.8 66.2 55.0
Recall (%) 30.7 37.4 13.0 34.6 43.0 58.9 19.6 37.2

F1-score (%) 40.9 47.3 22.2 41.2 49.9 57.3 30.3 44.4
AUC (%) 57.1 60.0 51.8 58.1 48.7 59.8 55.5 55.7

G-Mean (%) 50.6 55.6 35.4 51.1 56.9 59.8 42.4 52.6
Pfa (%) 16.6 17.5 3.4 27.0 24.7 29.4 8.5 25.8

#Client 6
Method VFL ALMITY CTMclient CTMall VFL+OS ALMITY+OS CTMclient+OS CTMall+OS

DL

Precision (%) 91.2 93.8 68.5 90.2 94.6 96.3 63.2 93.3
Recall (%) 92.2 94.8 44.2 85.1 92.2 94.3 58.3 92.9

F1-score (%) 91.7 94.3 53.8 87.6 93.4 95.3 60.7 93.1
AUC (%) 92.3 94.8 63.5 89.7 93.9 95.6 64.8 94.4

G-Mean (%) 92.3 94.8 60.5 89.6 93.9 95.6 64.5 94.4
Pfa (%) 7.4 5.2 17.2 5.6 4.4 3.1 28.6 2.6

ML

Precision (%) 60.9 63.6 66.1 62.7 60.3 56.0 55.4 53.2
Recall (%) 22.2 33.3 20.0 34.5 36.4 54.1 23.3 51.7

F1-score (%) 32.6 43.7 30.8 33.4 45.5 55.2 32.8 52.4
AUC (%) 55.1 58.6 54.7 57.3 57.9 58.1 53.7 56.2

G-Mean (%) 44.2 52.9 42.8 46.1 53.9 57.9 44.3 56.4
Pfa (%) 12.0 16.1 8.7 13.9 20.3 30.2 15.9 38.5

DL Cliff’s d 1.0 - 1.0 1.0 1.0 - 1.0 1.0

ML Cliff’s d 0.6 - 1.0 0.84 0.6 - 1.0 0.84
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TABLE II
THE PERFORMANCE OF DIFFERENT TRAINING METHODS IN THE CONTEXT OF DEFECT PREDICTION (DP) TASK

Model #Client 2

DL

Method VFL ALMITY CTMclient CTMall VFL+Oversampling ALMITY+Oversampling CTMclient+Oversampling CTMall+Oversampling

Precision (%) 60.2 60.6 57.8 58.4 74.1 75.5 59.9 60.3
Recall (%) 45.8 53.0 38.3 51.9 68.5 71.1 40.8 54.0

F1-score (%) 52.1 56.6 46.1 55.0 71.2 73.2 48.5 57.1
AUC (%) 60.2 62.0 57.3 60.3 74.1 75.8 58.8 62.2

G-Mean (%) 58.4 61.3 54.1 59.8 73.9 75.6 56.0 61.7
Pfa (%) 29.0 25.5 31.2 25.1 20.2 19.5 26.0 23.6

CostEffect@5% 36.4 41.4 29.4 38.9 70.3 74.2 42.1 45.1
Popt@5% 37.2 38.4 38.9 42.6 65.9 70.9 43.1 47.1

CostEffect@20% 50.8 54.6 38.4 49.3 69.5 71.7 39.2 48.8
Popt@20% 46.7 51.0 35.1 48.7 69.4 72.0 39.6 46.3

ML

Precision (%) 41.8 53.9 46.7 55.6 44.4 68.3 39.8 41.7
Recall (%) 35.1 78.7 84.0 91.0 43.2 36.4 86.3 47.7

F1-score (%) 38.2 64.0 60.0 69.1 43.8 47.5 54.5 44.5
AUC (%) 53.7 55.7 51.6 59.3 56.2 61.1 56.1 54.9

G-Mean (%) 50.3 50.8 40.1 50.1 54.7 55.9 47.3 54.5
Pfa (%) 27.7 67.2 80.9 72.5 30.7 24.2 74.1 37.8

#Client 3
Method VFL ALMITY CTMclient CTMall VFL+OS ALMITY+OS CTMclient+OS CTMall+OS

DL

Precision (%) 57.8 61.0 60.4 61.7 69.5 70.5 56.5 63.6
Recall (%) 44.4 57.2 36.0 46.9 57.3 64.9 47.8 47.9

F1-score (%) 50.2 59.1 45.1 53.3 69.5 70.5 51.8 54.7
AUC (%) 58.5 63.2 58.1 61.2 68.0 70.9 58.3 62.9

G-Mean (%) 56.8 62.9 53.7 59.5 67.2 70.7 57.4 59.5
Pfa (%) 30.9 24.5 31.1 27.5 23.0 19.9 24.6 21.2

CostEffect@5% 35.9 60.0 28.1 54.7 58.7 66.3 39.0 45.3
Popt@5% 38.0 60.5 27.1 54.2 58.0 65.9 41.4 46.0

CostEffect@20% 60.9 55.2 32.2 44.0 58.2 65.0 38.3 47.2
Popt@20% 58.5 56.7 31.1 41.0 58.4 65.1 38.6 44.3

ML

Precision (%) 68.7 64.1 46.6 40.1 38.3 42.1 40.1 39.4
Recall (%) 29.3 33.3 82.7 81.7 54.2 80.0 86.0 51.0

F1-score (%) 41.1 43.9 59.6 53.7 44.8 55.1 54.6 44.5
AUC (%) 59.0 58.8 51.4 56.2 52.3 58.8 56.6 53.3

G-Mean (%) 51.0 53.0 40.9 50.1 52.2 54.8 48.3 53.2
Pfa (%) 11.2 15.7 79.8 69.2 49.6 62.3 65.1 44.4

#Client 4
Method VFL ALMITY CTMclient CTMall VFL+OS ALMITY+OS CTMclient+OS CTMall+OS

DL

Precision (%) 57.3 58.4 56.3 50.4 63.4 66.9 57.2 62.0
Recall (%) 40.2 56.4 35.6 62.0 59.7 60.8 39.7 50.4

F1-score (%) 47.2 57.4 43.6 55.6 61.5 63.7 46.9 55.6
AUC (%) 57.5 62.2 56.1 61.3 65.3 67.7 57.3 63.4

G-Mean (%) 54.8 61.1 52.2 61.0 65.1 67.3 54.5 62.8
Pfa (%) 30.8 23.3 29.0 25.2 25.4 23.4 29.1 25.1

CostEffect@5% 35.4 55.8 33.2 52.2 31.1 59.2 34.5 52.7
Popt@5% 36.6 55.5 33.5 61.4 32.7 60.6 34.5 53.3

CostEffect@20% 33.8 54.4 34.9 52.6 34.8 58.7 34.6 49.6
Popt@20% 34.4 55.0 36.7 51.1 33.8 59.4 34.3 49.6

ML

Precision (%) 41.6 51.6 39.5 45.5 66.0 62.2 54.5 73.0
Recall (%) 85.9 33.8 90.1 39.4 35.0 41.8 89.6 34.5

F1-score (%) 56.1 40.9 54.9 42.3 45.8 50.0 67.7 46.9
AUC (%) 58.9 57.9 56.0 56.4 58.5 60.3 57.4 62.0

G-Mean (%) 52.3 52.7 44.4 53.7 53.6 57.4 47.4 55.6
Pfa (%) 68.1 17.9 78.1 26.7 18.0 21.2 74.9 10.6

#Client 5
Method VFL ALMITY CTMclient CTMall VFL+OS ALMITY+OS CTMclient+OS CTMall+OS

DL

Precision (%) 55.3 56.9 54.4 60.5 65.6 64.3 54.6 61.7
Recall (%) 44.3 52.8 26.4 47.7 46.4 56.9 41.5 49.6

F1-score (%) 49.2 54.8 35.6 53.3 64.3 65.6 47.2 55.4
AUC (%) 57.0 59.5 53.8 58.5 62.9 65.1 56.1 60.7

G-Mean (%) 55.6 59.1 46.3 57.3 60.7 64.5 54.2 59.3
Pfa (%) 28.9 18.7 30.3 26.3 26.7 20.6 29.3 26.4

CostEffect@5% 45.3 52.6 21.4 51.2 40.0 52.5 21.0 47.2
Popt@5% 45.2 53.3 19.1 51.2 39.6 51.0 19.5 47.4

CostEffect@20% 36.6 46.2 33.3 47.1 43.3 54.3 23.4 42.1
Popt@20% 38.8 49.4 29.8 46.2 41.6 53.5 22.3 41.6

ML

Precision (%) 47.9 50.2 46.1 40.2 44.7 45.8 58.3 45.9
Recall (%) 30.7 33.7 79.5 84.7 86.0 58.8 24.6 69.3

F1-score (%) 37.4 40.3 58.3 54.5 58.9 51.5 34.6 55.2
AUC (%) 55.9 57.4 51.1 56.6 62.9 59.7 57.3 61.5

G-Mean (%) 49.9 51.3 42.4 49.2 58.5 59.7 47.0 60.0
Pfa (%) 18.9 18.9 77.3 71.4 60.2 39.3 10.0 46.3

#Client 6
Method VFL ALMITY CTMclient CTMall VFL+OS ALMITY+OS CTMclient+OS CTMall+OS

DL

Precision (%) 54.1 60.6 61.3 57.9 58.5 62.1 69.5 60.2
Recall (%) 37.5 45.5 32.4 43.2 45.3 53.5 33.4 51.9

F1-score (%) 44.3 51.9 42.4 49.6 51.1 57.5 45.1 55.7
AUC (%) 55.4 60.3 57.6 59.4 59.1 62.9 60.5 61.4

G-Mean (%) 52.4 58.4 51.8 54.8 57.4 62.2 59.3 60.7
Pfa (%) 27.7 17.2 29.0 24.9 26.8 12.4 27.2 25.6

CostEffect@5% 16.1 38.0 32.4 50.1 46.8 47.6 20.9 47.1
Popt@5% 15.4 40.9 38.7 51.6 47.2 47.3 20.2 47.7

CostEffect@20% 27.7 46.4 26.0 45.6 45.7 47.9 21.9 40.6
Popt@20% 25.4 44.3 29.3 46.5 45.5 47.1 21.5 41.5

ML

Precision (%) 38.8 47.1 71.4 36.6 41.5 41.7 46.2 40.2
Recall (%) 72.3 34.0 18.2 52.1 44.6 80.9 25.5 46.1

F1-score (%) 50.6 39.5 29.0 43.0 43.1 55.1 32.9 42.9
AUC (%) 54.1 56.2 56.1 50.6 54.7 58.7 54.4 53.7

G-Mean (%) 51.0 51.7 41.3 50.6 53.8 54.3 46.1 53.2
Pfa (%) 64.1 21.6 18.2 50.8 35.3 63.5 16.8 38.6

DL Cliff’s d 0.96 - 1.0 0.52 0.36 - 1.0 0.76

ML Cliff’s d 0.60 - 1.0 0.60 0.92 - 1.0 0.36
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Metrics. In addressing this RQ, we employ a standard set of
widely recognized evaluation metrics to assess the performance
of various training methods. These metrics encompass Preci-
sion, Recall, F1-score, G-Mean, AUC, and the Probability of
False Alarm (Pfa). We exclude the metric, Accuracy, from our
evaluation criteria because it can introduce a large bias when
assessing model performance on skewed datasets. For the DL
defect prediction task, we augment our evaluation with two
additional metrics: two effect-aware metrics, i.e., CostEffect
[49] and Popt [49], [50], which are utilized for conducting cost-
benefit analysis. We assess these two effort-aware metrics at
specific levels: CostEffect@5%, CostEffect@20%, Popt@5%,
and Popt@20%. Please be aware that each data instance in the
dataset used for training the ML-based defect predictor com-
prises 22 different metrics, with no corresponding source code
available. Therefore, the application of effort-aware metrics on
this dataset is not suitable. With this in mind, we exclusively
conduct a cost-benefit analysis on the DL-based defect predictor
using these two metrics. Moreover, we conduct an effect size
analysis, utilizing Cliff’s delta [50], [51], [52], a widely recog-
nized metric in effect size analysis, to facilitate the interpreta-
tion of the significance of our experimental results. Specifically,
we employ G-Mean to assess the performance of various train-
ing methods and calculate the effect size. G-Mean is chosen
for this purpose because it exhibits the least susceptibility to
bias from the class imbalance among performance metrics [53].
The resulting value of Cliff’s delta can be interpreted as follows
[53]: 1) A no-effect size: Cliff’s delta is smaller than 0.11. 2) A
small effect size: Cliff’s delta is ∈ [0.11, 0.28). 3) A medium
effect size: Cliff’s delta is ∈ [0.28, 0.43). 4) A large effect size:
Cliff’s delta is no less than 0.43. In our study, a large Cliff’s
delta indicates that ALMITY has a positive impact on training
well-performed models, and each effect size value in the tables
represents the effect size between ALMITY and a respective
baseline method.

Results. The experimental results are presented in Table I and
Table II. Based on these experimental findings, we can draw the
following observations:

1) In the context of academic dataset distributions,
ALMITY consistently outperforms the baseline meth-
ods in a set of evaluation aspects, whether applied to
training DL or ML models in different SE tasks. By
examining Table I and Table II, it is evident that ALMITY

consistently outperforms the baseline methods in terms of
the G-Mean measure, regardless of the number of clients
involved in the training process, the type of learning-
based models (i.e., ML and DL), and the specific SE
task under consideration. As an illustration, in the PD
task, ALMITY attains a G-Mean score of approximately
60%, surpassing VFL and CTM by 3-4% while ALMITY

also exhibits a similar trend in the CCD task. In the ma-
jority of instances, Cliff’s d values for ALMITY indicate
a substantial enhancement in performance on academic
datasets with mildly imbalanced data distributions. Only
in two instances within the DP task does ALMITY exhibit a
moderate impact on performance improvement compared
to baseline methods. Regarding the cost-effectiveness
aspect, in the majority of cases, ALMITY exhibits
relatively higher CostEffect and Popt values in training

the DL-based defect predictor compared to the baseline
methods, especially for VFL. Furthermore, ALMITY con-
sistently attains the lowest Pfa values across the majority
of cases. Even in instances where ALMITY exhibits a rel-
atively higher Pfa value, the Precision and Recall metrics
for our framework outperform those of other training
methods. Regarding the Cliff’s delta metric, 22 out of 24
Cliff’s delta values exceed 0.43, illustrating the important
significance of ALMITY’s performance improvement. In
contrast, only two instances yield a value of 0.36, in-
dicating a moderate level of significance in ALMITY’s
performance improvement. These findings provide evi-
dence supporting ALMITY’s effectiveness in training high-
performing models on academic datasets.

2) ALMITY can enhance the performance of learning-
based models trained on multiple small-scale datasets
compared to models trained on the entire dataset.
In the majority of cases for both DP and CCD tasks,
ALMITY outperforms the performance of CTM on the
entire dataset. A thorough analysis suggests that this su-
periority may be attributed to the inherent class imbalance
in academic datasets, especially within the DP datasets,
where the ratio of defective instances to non-defective
instances is nearly 1:3. Our method, ALMITY, facilitates
the acquisition of more suitable model parameters in
fewer training iterations, thanks to our parameter aggre-
gation strategy. Consequently, with an equivalent num-
ber of training rounds, ALMITY’s parameter aggregation
strategy generates more optimal model parameters and
thus empowers learning-based models to achieve higher
performance compared to training models on the com-
plete dataset.

3) The application of oversampling techniques results
in performance improvements of varying magni-
tudes across different training methods. The imple-
mentation of oversampling techniques proves beneficial
for enhancing the performance of various categories of
learning-based models in both CCD and DP tasks. For
example, in the CCD task, the use of oversampling ele-
vates the G-Mean measure for DL models from approx-
imately 95.0 to well over 96.0, while it contributes to a
G-Mean improvement of around 3-4% for ML models.
Moreover, the utilization of oversampling techniques can
assist ALMITY and VFL in surpassing the performance
of the CTM method across the majority of cases, re-
sulting in improvements. For example, in the DP task,
the application of the oversampling technique elevates
ALMITY’s performance from 61.3% to 75.6% in terms of
G-Mean and enhances VFL’s performance from 58.4%
to 73.9% when utilizing just 2 clients. This improvement
far surpasses the performance enhancement achieved by
CTM. This is attributed to the fact that ALMITY and
VFL involve multiple clients, necessitating oversampling
within each client’s dataset. As a result of this process, the
oversampled datasets encompassing all clients in ALMITY

and VFL are to some extent larger than the dataset after
implementing the oversampling technique employed in
CTM. Note that this phenomenon is not an experimental
error. It arises from the inherent distinctions between the
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FL-based framework and CTM. Overall, in the major-
ity of instances, ALMITY outperforms CTM and VFL
after implementing the oversampling technique. More-
over, in many cases, our framework without the oversam-
pling technique still surpasses CTM when this technique
is employed.

4) For FL-based training methods, i.e., VFL and
ALMITY, their ultimate performance remains unaf-
fected by the number of clients they encompass.
Drawing insights from Table I and Table II, it becomes
evident that in the context of FL-based training methods,
namely VFL and ALMITY, the performance of the model
in different tasks remains consistently stable within a
certain range, regardless of the number of clients. As an
example, when considering ALMITY, in the CCD task,
the DL model consistently achieves approximately 95%
(±1%) in G-Mean, while the ML model maintains an
approximately 55% (±5%) performance level. In the DP
task, the DL model tends to hover around 60% (±3%),
while the ML model maintains a performance of roughly
50% (±5%).

5) At least two factors can influence the performance
of a learning-based model: the complexity of the
task and the nature of the input. In the realm of
DL models, training a highly effective defect predictor
is a more challenging task compared to training a clone
detector. Drawing upon the insights gleaned from the
aforementioned findings, it becomes evident that, on the
datasets with similar data scales and data balance, the DL-
based clone detector consistently attains a G-Mean score
exceeding 95%, a substantial improvement of around 35
percent points compared to the DL-based defect pre-
dictor’s performance. This phenomenon arises from the
inherent advantage of DL models in the task of gener-
ating code representation and calculating the similarity
between the representations of these two code fragments,
as opposed to the more complex task of identifying bugs
within code fragments based on their code representa-
tions. Hence, this disparity in performance can be at-
tributed to the inherent complexity of the tasks involved.
In addition, in the CCD, a noteworthy distinction arises:
the ML-based clone detector gets worse performance
than the DL-based detector. The ML model encounters
challenges in comprehending the intricacies of code rep-
resentations generated by CodeGraphBERT. Therefore,
the DL-based detector predictor outperforms the ML
model. This illustrates that ML-based models are better
suited for processing metric-based data as opposed to
complex representations.

✍ RQ-1 � In this RQ, we substantiate the potential and
feasibility of employing FL-based approaches, namely VFL
and ALMITY, for addressing SE tasks. Furthermore, on
academic datasets, we discern that ALMITY consistently
outperforms baseline methods across various model types
and diverse SE tasks. �

B. RQ-2: Can ALMITY Outperform Baselines on Diverse
Skewed Data Distributions?

Motivation. Real-world industrial datasets often exhibit
varying scales (specific to each company) and levels of data bal-
ance (task-dependent). However, employing conventional train-
ing methods like CTM and FL to train deep learning models
on imbalanced datasets may lead to a decline in performance.
To address this challenge, we introduce a novel framework,
ALMITY, designed to enhance model performance on skewed
datasets while preserving data privacy. I In this RQ, we aim
to assess the effectiveness of ALMITY on datasets with diverse
data distributions. Our comprehensive experiments evaluate the
performance of different training methods, seeking to determine
whether ALMITY can indeed improve model performance on
skewed datasets, thereby addressing an important concern in
industrial settings.

Method. As previously discussed in the background, two
prevalent types of skews found in datasets are quantity skew
and label distribution skew. Consequently, in our assessment
of ALMITY’s effectiveness, we systematically manipulate the
attributes related to data scale and data balance. This enables
us to generate a diverse set of skewed datasets with varying
data distributions, allowing for a comprehensive evaluation of
ALMITY’s performance across these diverse scenarios.

In order to create a variety of imbalanced datasets that en-
compass a wide spectrum of data distributions, and to ensure
that these generated datasets accurately mirror the task-specific
distributions encountered in real-world scenarios for both the
CCD and DP tasks, we categorize nine distinct types of data
distributions. These data distribution classifications are derived
from adjustments in data scale and data balance, i.e., Φ and α.
To begin, we conduct an initial examination of the real-world
distribution of datasets pertaining to these two tasks. For the
distribution of the real-world CCD dataset, several prior studies
[17], [18] have indicated that software systems commonly ex-
hibit approximately 10% to 20% cloned code, even with cloned
instances of proportions exceeding 50%. Additionally, for the
DP task, Ni et al. [36] noted that the defect ratios in different
projects vary, ranging from 15% to 30%. Hence, drawing upon
the insights gained from the previous analysis, we establish two
thresholds among real-world task-specific data distribution to
categorize the data scale (Φ) and data balance (α) of a dataset
into three discernible levels: low-range, medium-range, and
high-range values, respectively. More specifically, we select a
significant value, 50%, among task-specific data distributions
as the threshold for distinguishing between high-range and
medium-range attribute values. Additionally, we utilize a value,
i.e., 20%, which is present in both the CCD and DP task data
distributions, as another threshold to differentiate between low-
range and medium-range values. Expanding on this concept, for
data scale: 1) The data scale attribute is categorized as high-
range if the number of its data instances exceeds 50% of the
optimal data scale. 2) The data scale attribute is considered
medium-range if the number of its data instances falls within
the range of 50% to 20% of the optimal data scale. 3) The data
scale attribute is classified as low-range if the number of its data
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instances is less than 20% of the optimal data scale. For the data
balance attribute: 1) The data balance attribute is categorized
as high-range when the ratio of negatives to positives surpasses
1:2. 2) The data balance attribute is considered medium-range
if the ratio of negatives to positives falls within the range of 1:2
to 1:5. 3) The data balance attribute is classified as low-range if
the ratio of negatives to positives is less than 1:5. To facilitate
a clearer understanding, we offer a comprehensive example for
illustration. Let us consider an FL-based framework comprising
four clients, with a total of 400 data instances distributed among
them. In this scenario, the optimal values for data scale and
data balance in each client are set at 100 and 1:1 (50 positives
and negatives), respectively. Suppose a client possesses 60 data
instances, with 10 of them being positive. In this case, the client
is characterized by a high-range value in terms of data scale
(representing 60% of the optimal data scale value) and a low-
range value with regard to data balance (constituting only 20%
of the optimal data balance value, 10 : (60− 10)).

Currently, the classification for data scale attribute values
is as follows: High-range value (H): When Φ≥ 0.5; Medium-
range value (M): When 0.2< Φ< 0.5; Low-range value (L):
When Φ≤ 0.2. Similarly, the classification for data balance
attribute values is as follows: High-range value (H): When
α≥ 1 : 2; Medium-range value (M): When 1 : 5< α < 1 : 2;
Low-range value (L): When α≤ 1 : 5. Next, we amalgamate
the three distinct classifications for each attribute, resulting in
a total of nine different data distributions: 1) HH: high-range
data scale and high-range data balance, 2) HM: high-range
data scale and medium-range data balance, 3) HL: high-range
data scale and medium-range data balance, 4) MH: medium-
range data scale and medium-range data balance, 5) MM:
medium-range data scale and medium-range data balance,
6) ML: medium-range data scale and low-range data balance,
7) LH: low-range data scale and high-range data balance,
8) LM: low-range data scale and medium-range data balance,
and 9) LL: low-range data scale and low-range data balance.
In the end, we produce a total of 36 datasets, with each set
of four datasets belonging to one of the data distribution types
mentioned earlier.

Experiment 1: To ascertain the effectiveness and practical-
ity of ALMITY across various data distributions, we carry out
experiments aimed at comparing the performance of different
training methods within these distinct data distribution contexts.
We configure the number of clients for both FL and ALMITY

to be four, which corresponds to the median value observed in
RQ1. In our pursuit of replicating real-life conditions as closely
as possible within our experimental settings, we rigorously
maintain the independence of the various client-side datasets.
Consequently, when assessing the effectiveness of CTM in each
unique combination, we determine the average performance
across all four clients as the final result.

Experiment 2: In practical real-world scenarios, FL-based
frameworks often encounter diverse data distributions. Bear-
ing this in mind, we incorporate multiple datasets, each rep-
resenting various data distributions, within the same FL-based
framework. Specifically, we create both a VFL and the ALMITY

framework, each comprising nine distinct clients. Each client

is equipped with a dataset characterized by a unique type of
data distribution. Similar to the approach taken in RQ1, we
still consider CTM as a baseline method. In the case of using
CTM, we assess the model’s performance on each individual
client-side dataset, as well as its performance when trained on
the comprehensive dataset resulting from the integration of nine
distinct datasets.

Metrics. Likewise, in this RQ, we employ the identical set of
evaluation metrics as utilized in RQ1. These metrics encompass
Precision, Recall, F1-score, AUC, G-Mean, and the Probability
of False Alarm (Pfa) to assess the model’s performance. Ad-
ditionally, we examine cost-effectiveness through the metrics
CostEffect and Popt at 5% and 20% within the code churn.
To validate improvements in ALMITY’s effectiveness, we also
incorporate Cliff’s delta as an effect size metric.

Statistical Test. To ensure the accuracy of ALMITY, we
employ a statistical test to validate the significance of its perfor-
mance across various data distributions. We utilize the widely
recognized Wilcoxon test [54] in our study, a statistical test that
has been employed in numerous prior studies [55], [56]. In our
analysis, we conduct the Wilcoxon test, comparing ALMITY’s
performance on different types of data distributions with each
baseline method to calculate the respective p-values. Follow-
ing the experimental methodology outlined in [55], [56], we
evaluate the p-value generated by the test at the commonly
accepted significance level of 0.05. Note that we employ the
G-Mean as the metric for the statistical test, as the G-Mean
serves as a summary evaluation metric unaffected by skewed
data distributions. Our null and alternative hypotheses are
as follows:

1) H0: ALMITY cannot achieve better performance than
baseline methods.

2) H1: ALMITY would tend to achieve better performance
than baseline methods.

Results. The experimental results are presented in Table III to
Table VII. According to the results, we can obtain the following
observations:

1) Experiment 1: Compared with baseline methods,
ALMITY can enhance the performance of the learning-
based model across various data distributions. From
the preceding four tables, we observe that among the
nine different types of data distributions, ALMITY consis-
tently outperforms other training methods. Additionally,
based on Cliff’s d values comparing ALMITY’s G-Mean
performance with that of the baselines across these nine
data distributions, 49 out of the total 72 Cliff’s d val-
ues indicate that ALMITY exhibits a statistically signif-
icant improvement in model performance compared to
the baselines. Out of these Cliff’s delta values, 15.3%
(11) indicate that ALMITY improves the performance of
learning-based models to a moderate extent, while an-
other 15.3% (11) show a small improvement. Notably,
in the context of the CCD task, there is only one in-
stance where ALMITY achieves the same performance as
CTM on the entire dataset in the ML distribution, and
this occurs after employing the oversampling technique.
This is attributed to the application of the oversampling
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TABLE III
THE PERFORMANCE OF VARIOUS TRAINING METHODS ON DATASETS WITH HIGH SCALE AND DIVERSE DATA BALANCE DISTRIBUTIONS

Task Model Distribution HH

CCD

DL

Method VFL ALMITY CTMclient CTMall VFL+Oversampling ALMITY+Oversampling CTMclient+Oversampling CTMall+Oversampling

Precision (%) 95.3 96.3 60.0 92.6 86.5 91.7 77.4 95.4
Recall (%) 92.2 93.8 90.8 94.6 84.5 92.6 51.3 94.5

F1-score (%) 93.7 95.0 71.8 93.6 85.5 92.1 60.5 91.8
AUC (%) 94.1 95.6 66.7 94.1 86.2 92.5 75.1 95.2

G-Mean (%) 94.1 95.6 61.3 94.1 86.2 92.5 69.7 94.9
Pfa (%) 4.1 2.5 47.3 4.5 12.0 7.6 21.1 4.1

ML

Precision (%) 47.7 49.2 68.3 55.0 45.8 54.6 58.4 46.7
Recall (%) 46.4 51.8 22.7 37.2 45.0 40.9 22.9 56.3

F1-score (%) 47.1 50.4 34.0 44.4 45.4 46.8 32.9 51.1
AUC (%) 53.0 56.8 57.1 55.7 50.0 56.1 54.6 51.0

G-Mean (%) 52.6 56.6 45.6 52.6 49.8 52.9 44.4 50.7
Pfa (%) 40.4 38.1 8.4 25.8 44.9 28.8 13.8 54.3

DP

DL

Precision (%) 52.8 59.0 54.7 62.7 66.5 69.1 58.8 62.3
Recall (%) 37.6 51.7 18.0 49.0 46.0 54.8 48.7 44.6

F1-score (%) 43.9 55.1 27.1 55.0 54.4 61.2 53.3 52.0
AUC (%) 56.8 63.0 53.3 62.7 62.5 67.6 60.1 61.4

G-Mean (%) 53.5 62.0 40.0 61.1 60.3 66.4 59.0 59.0
Pfa (%) 24.0 25.6 11.4 23.6 21.0 19.6 28.5 21.8

CostEffect@5% (%) 32.5 37.5 17.4 36.4 46.5 57.4 28.3 43.2
Popt@5% (%) 36.6 42.5 17.1 41.5 45.6 56.4 28.1 50.7

CostEffect@20% (%) 32.4 39.1 24.1 38.7 46.4 54.4 30.2 45.1
Popt@20% (%) 32.1 37.9 21.8 37.0 47.5 56.1 29.1 45.5

ML

Precision (%) 68.3 59.9 45.2 49.0 52.6 41.3 51.7 39.1
Recall (%) 36.4 56.5 88.7 53.0 86.0 68.6 68.1 92.0

F1-score (%) 47.5 52.2 66.0 50.9 55.8 54.5 54.4 54.9
AUC (%) 61.1 57.0 49.6 50.4 62.5 61.8 54.4 60.3

G-Mean (%) 55.9 57.0 42.3 51.4 57.9 59.5 46.0 51.2
Pfa (%) 44.2 45.8 79.8 50.2 61.0 55.1 68.9 71.5

Task Model Distribution HM

CCD

DL

Method VFL ALMITY CTMclient CTMall VFL+Oversampling ALMITY+Oversampling CTMclient+Oversampling CTMall+Oversampling

Precision (%) 89.4 92.1 0.0 92.1 87.3 89.4 48.8 74.8
Recall (%) 86.9 86.9 0.0 70.2 85.0 91.6 64.1 84.9

F1-score (%) 88.2 89.4 0.0 82.8 86.1 91.6 55.4 83.5
AUC (%) 91.4 92.0 0.0 89.5 90.4 94.1 72.5 93.8

G-Mean (%) 91.3 91.8 0.0 87.1 90.3 94.1 72.0 92.8
Pfa (%) 4.0 2.9 0.0 12.8 4.1 3.3 19.2 8.3

ML

Precision (%) 60.6 44.6 66.2 59.7 45.2 51.4 46.5 48.3
Recall (%) 24.2 38.0 13.3 24.6 36.6 32.8 81.1 79.0

F1-score (%) 34.5 41.0 22.1 34.9 40.5 40.0 59.1 60.0
AUC (%) 55.4 49.0 53.7 55.3 49.5 53.3 51.1 53.7

G-Mean (%) 45.8 47.8 35.4 46.0 47.8 49.2 41.4 47.4
Pfa (%) 13.3 39.9 5.8 14.1 37.6 26.3 78.9 71.5

DP

DL

Precision (%) 60.0 64.7 0.0 68.8 61.5 83.7 72.9 61.1
Recall (%) 3.6 10.6 0.0 7.7 45.3 59.5 42.1 41.0

F1-score (%) 6.7 18.2 0.0 13.9 52.2 69.6 53.4 49.1
AUC (%) 51.4 54.3 0.0 53.2 61.3 75.1 64.8 60.1

G-Mean (%) 18.8 32.2 0.0 27.6 59.2 73.5 60.7 57.0
Pfa (%) 0.7 1.9 0.0 1.3 22.7 9.3 12.5 20.9

CostEffect@5% (%) 8.3 11.9 0.0 13.7 37.4 57.9 50.0 31.6
Popt@5% (%) 2.3 8.1 0.0 12.2 37.2 55.8 50.8 33.6

CostEffect@20% (%) 2.3 9.1 0.0 13.9 39.3 58.3 46.6 39.9
Popt@20% (%) 2.4 8.9 0.0 13.4 39.9 58.3 48.3 37.9

ML

Precision (%) 24.6 34.1 33.8 27.8 49.5 48.3 40.0 48.9
Recall (%) 72.1 77.5 83.9 59.5 93.7 79.0 92.6 93.7

F1-score (%) 36.7 47.3 48.2 37.9 64.8 59.9 55.9 64.2
AUC (%) 52.5 58.7 51.1 50.7 58.6 57.7 56.6 57.6

G-Mean (%) 51.6 53.7 39.1 50.0 46.9 53.5 43.7 44.9
Pfa (%) 63.0 60.0 81.8 58.0 76.5 63.6 79.4 78.5

Task Model #Distribution HL

CCD

DL

Method VFL ALMITY CTMclient CTMall VFL+Oversampling ALMITY+Oversampling CTMclient+Oversampling CTMall+Oversampling

Precision (%) 95.1 98.6 0.0 79.0 82.3 84.9 80.0 68.0
Recall (%) 76.3 83.3 0.0 72.6 87.5 92.9 37.6 82.8

F1-score (%) 84.7 90.6 0.0 75.6 84.8 88.8 51.2 74.6
AUC (%) 87.7 91.8 0.0 86.0 91.4 94.4 67.7 89.8

G-Mean (%) 86.9 91.4 0.0 84.8 91.3 94.4 60.6 89.5
Pfa (%) 1.0 0.3 0.0 10.5 4.6 4.1 2.3 3.1

ML

Precision (%) 0.0 0.0 0.0 0.0 0.0 75.0 0.0 0.0
Recall (%) 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0

F1-score (%) 0.0 0.0 0.0 0.0 0.0 6.4 0.0 0.0
AUC (%) 0.0 0.0 0.0 0.0 0.0 51.4 0.0 0.0

G-Mean (%) 0.0 0.0 0.0 0.0 0.0 18.2 0.0 0.0
Pfa (%) 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0

DP

DL

Precision (%) 0.0 64.3 0.0 0.0 74.1 92.8 52.1 86.5
Recall (%) 0.0 3.2 0.0 0.0 43.5 62.0 43.1 54.8

F1-score (%) 0.0 6.4 0.0 0.0 54.9 74.3 47.2 67.1
AUC (%) 0.0 50.6 0.0 0.0 65.7 79.1 55.7 74.0

G-Mean (%) 0.0 16.7 0.0 0.0 61.8 77.2 54.3 71.5
Pfa (%) 0.0 2.2 0.0 0.0 12.1 3.8 3.2 6.8

CostEffect@5% (%) 0.0 6.3 0.0 0.0 44.6 60.2 38.4 30.8
Popt@5% (%) 0.0 2.4 0.0 0.0 44.9 59.1 39.0 28.2

CostEffect@20% (%) 0.0 2.3 0.0 0.0 49.8 62.1 36.6 23.6
Popt@20% (%) 0.0 2.7 0.0 0.0 48.6 61.6 37.1 24.1

ML

Precision (%) 30.0 16.9 30.9 25.0 47.0 54.9 38.4 39.1
Recall (%) 12.0 19.6 11.0 14.2 90.8 80.1 96.0 92.0

F1-score (%) 17.1 18.2 16.2 17.6 61.9 65.2 54.9 49.7
AUC (%) 52.5 47.8 52.4 53.3 55.4 57.2 59.5 60.3

G-Mean (%) 33.4 38.6 32.2 34.3 42.6 52.4 47.0 51.2
Pfa (%) 24.0 7.0 6.1 17.6 65.7 70.0 71.5 66.3

CCD DL Cliff’s d 0.56 — 1.0 0.56 1.0 — 1.0 0.11
ML Cliff’s d 0.22 — 0.44 0.22 0.34 — 0.56 0.34

DP DL Cliff’s d 0.34 — 0.56 0.34 1.0 — 1.0 0.78
ML Cliff’s d 0.34 — 0.56 0.56 0.56 — 1.0 1.0
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technique, which balances the entire dataset by adding
minority class data instances, consequently resulting in
an improved performance by CTM. Indeed, employing
CTM to train a learning-based model on the complete
dataset is impractical for real-world application scenar-
ios. This is primarily because, in practice, datasets from
various organizations or companies cannot be seamlessly
integrated due to concerns about data security and data
privacy. Hence, according to the aforementioned analysis,
ALMITY consistently excels over the baselines in training
high-performing learning-based models across diverse
data distributions.

2) Experiment 1: ALMITY enhances the learning capac-
ity of learning-based models when confronted with
highly skewed datasets, empowering these models to
make effective decisions in such challenging condi-
tions. For example, in the context of the DP task, ALMITY

distinguishes itself from other training methods that fail
to enable the DL-based defect predictor to predict any
defects within the dataset characterized by the HL data
distribution. ALMITY empowers this defect predictor to
effectively discern a limited number of genuine defects
within datasets of this distribution. This demonstrates that
ALMITY enables the DL-based defect predictor to effec-
tively distinguish between defective and non-defective
code within such skewed data distributions. Furthermore,
a comparable pattern is observed in the CCD task. Fol-
lowing the application of the oversampling technique,
ALMITY enables the ML-based clone detector to initiate
the identification of certain clones within the dataset char-
acterized by the HL data distribution, achieving a recall
rate of 3.3%. In contrast, employing baseline training
methods to train the same ML-based clone detector yields
no clone identification from datasets of this distribution.

3) Experiment 1: The ML-based defect predictor can
outperform the ML-based clone detector, despite
the dataset used for training the ML-based defect
predictor being smaller and exhibiting more imbal-
ance compared to the dataset used for training the
ML-based clone detector. By referring to Table IV and
Table V, it becomes evident that in heavily skewed data
distributions, the ML-based defect predictor consistently
attains superior performance compared to the ML-based
clone detector, despite both models being trained using
the same ML algorithm, i.e., SVM. As an example, when
examining the MM data distribution, the ML-based defect
predictor achieves an approximate 50% G-Mean perfor-
mance, which is nearly twice as high as that of the clone
detector. Besides, in the case of the ML data distribution,
the ML-based clone detector fails to attain a satisfactory
model performance in clone detection, while the defect
predictor still manages to identify defects within this
data distribution, scoring approximately 45% in G-Mean.
The aforementioned observations highlight that training
a highly effective ML model is more achievable when
working with straightforward metric-based datasets as
opposed to complex high-dimensional vectors.

4) Experiment 1: In certain highly skewed and small-
scale data distributions, baseline training methods
cannot enable learning-based models to make ac-
curate predictions. Based on these experimental result
tables, for both the CCD and DP tasks, we can find that
all training methods cannot train a usable model from the
datasets with two types of data distributions, including
the ML data distribution and the LL data distribution.
The poor performance of ML models on the ML data
distribution can be attributed to the low-range values in
the data balance attribute. This deficiency results in an
insufficient presence of minority class data instances, i.e.,
defect instances or clones within the dataset character-
ized by this distribution. Hence, learning-based models
struggle to capture the features of the minority class
and face challenges in distinguishing between data in-
stances belonging to different classes. This further under-
scores the significance of the minority class learnability
attribute that we introduced during the parameter aggre-
gation process. In addition to the previously mentioned
factor, namely the scarcity of minority class instances,
another potential contributing factor to the poor per-
formance of both DL and ML models on the LL data
distribution is the insufficient quantity of data instances
within the dataset. This shortage may hinder models
from effectively acquiring knowledge. Except for the
ML and LL data distributions, in the DP task, ALMITY
achieves slightly higher performance than other baselines
in the HL and MM distributions. The baseline training
methods cannot identify any defects from datasets, while
ALMITY can identify a small proportion of defects cor-
rectly. The fundamental reasons are similar to those men-
tioned earlier. For the HL data distribution, despite the
large number of data instances in this distribution, only
a few instances are real defects, making it challenging
for the DL-based defect predictor to learn to distinguish
defects from non-defective code. The poor performance
within the MM data distribution can be attributed to
the insufficient number of medium-scale data instances,
which makes it challenging for DL models to acquire
meaningful knowledge from this dataset. However, a
slight improvement in ALMITY’s performance indicates
that our framework can effectively leverage fewer data
instances or more imbalanced datasets to capture distinc-
tions between defective and non-defective code.

5) Experiment 1: Across real-world task-specific
data distributions, ALMITY consistently proves
effective in enhancing the performance of
learning-based models. Given that the classification of
various data distributions is grounded in real-world, task-
specific data scenarios, among the nine data distributions
considered, the HL, ML, and LL distributions closely
approximate real-world defect and clone distributions
at varying scales of datasets. Our experimental results
on these three distributions consistently demonstrate
ALMITY’s superiority over the baselines in training
learning-based models with higher G-Mean performance.
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TABLE IV
THE PERFORMANCE OF VARIOUS TRAINING METHODS ON DATASETS WITH MEDIUM SCALE AND DIVERSE DATA BALANCE DISTRIBUTIONS

Task Model Distribution MH

CCD

DL

Method VFL ALMITY CTMclient CTMall VFL+Oversampling ALMITY+Oversampling CTMclient+Oversampling CTMall+Oversampling

Precision (%) 92.0 93.7 67.4 84.9 94.7 95.4 72.4 90.7
Recall (%) 83.1 90.6 69.2 85.9 90.4 92.4 72.4 77.5

F1-score (%) 87.3 92.1 68.3 85.4 92.5 93.9 72.4 80.5
AUC (%) 88.2 92.8 72.7 87.6 93.3 94.5 75.5 85.6

G-Mean (%) 88.1 92.7 72.6 87.6 93.2 94.4 75.5 85.5
Pfa (%) 6.6 5.1 33.8 15.6 3.9 3.4 31.4 14.3

ML

Precision (%) 55.5 56.9 52.9 49.6 48.7 46.5 59.4 52.2
Recall (%) 25.0 33.0 18.0 27.5 73.3 45.3 18.3 35.9

F1-score (%) 34.5 41.8 26.9 35.4 58.6 45.9 28.0 45.1
AUC (%) 55.4 56.5 53.3 53.8 54.3 51.8 54.2 54.3

G-Mean (%) 46.3 51.4 39.9 46.9 50.9 51.6 40.6 51.7
Pfa (%) 14.3 20.0 11.4 20.0 64.6 35.7 10.0 35.5

DP

DL

Precision (%) 61.9 66.7 68.0 58.9 57.6 64.1 61.4 59.3
Recall (%) 33.3 46.2 10.9 45.3 51.0 58.3 49.6 47.7

F1-score (%) 43.3 54.5 18.8 51.2 54.1 61.1 54.9 52.4
AUC (%) 59.4 64.9 53.6 59.8 60.5 66.1 62.3 60.3

G-Mean (%) 53.4 62.1 32.4 58.0 59.7 65.6 61.0 58.4
Pfa (%) 14.6 16.4 3.7 25.6 30.0 26.1 24.9 26.0

CostEffect@5% (%) 30.5 54.3 39.9 40.5 52.5 56.9 39.6 50.0
Popt@5% (%) 27.4 52.9 27.8 47.3 57.9 60.2 39.4 53.6

CostEffect@20% (%) 33.0 45.8 38.3 40.7 50.2 53.9 40.4 44.4
Popt@20% (%) 32.0 42.0 39.2 40.1 50.8 52.2 39.6 47.3

ML

Precision (%) 46.7 48.2 29.2 47.4 43.4 45.3 33.3 48.6
Recall (%) 64.1 45.0 95.2 55.6 44.2 57.5 27.9 85.3

F1-score (%) 54.0 46.6 44.6 51.2 43.8 50.7 30.4 61.9
AUC (%) 51.7 55.9 59.3 54.1 52.4 55.0 55.9 57.1

G-Mean (%) 50.2 54.9 47.3 54.1 51.7 55.0 48.5 52.2
Pfa (%) 33.1 43.3 76.5 31.0 39.4 43.4 26.5 65.2

Task Model #Distribution MM

CCD

DL

Method VFL ALMITY CTMclient CTMall VFL+Oversampling ALMITY+Oversampling CTMclient+Oversampling CTMall+Oversampling

Precision (%) 90.9 93.3 0.0 74.3 87.1 91.6 63.6 84.1
Recall (%) 73.5 86.4 0.0 77.3 87.1 91.6 49.4 61.6

F1-score (%) 81.3 89.7 0.0 75.8 87.1 91.6 55.6 71.1
AUC (%) 84.9 92.0 0.0 86.5 91.4 94.1 70.0 78.6

G-Mean (%) 84.2 91.8 0.0 91.9 91.3 94.1 66.9 76.6
Pfa (%) 3.7 2.5 0.0 2.8 4.3 3.3 9.4 4.4

ML

Precision (%) 54.5 50.0 80.0 52.0 45.2 48.4 58.9 61.5
Recall (%) 6.0 7.5 5.0 6.3 17.5 18.8 13.1 17.0

F1-score (%) 10.8 13.0 9.4 11.2 25.2 27.0 21.5 26.6
AUC (%) 52.2 52.7 52.1 51.3 52.7 53.7 52.7 54.0

G-Mean (%) 24.3 27.1 22.3 24.5 39.2 40.8 34.8 39.3
Pfa (%) 1.6 1.3 7.1 3.8 12.1 11.4 7.8 9.0

DP

DL

Precision (%) 0.0 81.8 0.0 0.0 74.0 88.3 54.9 57.0
Recall (%) 0.0 11.5 0.0 0.0 38.3 55.3 36.2 47.3

F1-score (%) 0.0 20.2 0.0 0.0 50.5 68.0 43.6 51.7
AUC (%) 0.0 55.3 0.0 0.0 63.8 74.7 56.2 59.4

G-Mean (%) 0.0 33.8 0.0 0.0 58.4 72.1 52.5 58.2
Pfa (%) 0.0 0.9 0.0 0.0 10.7 5.9 23.8 28.5

CostEffect@5% (%) 0.0 5.3 0.0 0.0 43.5 48.6 39.7 47.4
Popt@5% (%) 0.0 7.3 0.0 0.0 41.1 49.2 43.1 55.9

CostEffect@20% (%) 0.0 12.5 0.0 0.0 42.4 51.8 33.8 50.3
Popt@20% (%) 0.0 13.3 0.0 0.0 43.7 51.2 34.6 51.5

ML

Precision (%) 50.0 33.3 38.1 30.6 31.1 50.0 28.2 29.3
Recall (%) 28.0 30.8 16.0 82.7 37.1 42.1 21.0 40.0

F1-score (%) 35.9 32.0 22.5 44.6 33.8 45.7 24.1 33.7
AUC (%) 57.0 56.7 54.3 55.5 54.9 54.7 51.7 50.6

G-Mean (%) 49.1 50.4 38.5 48.4 51.9 53.2 41.6 49.5
Pfa (%) 14.0 17.3 7.4 71.7 27.1 22.6 17.6 38.6

Task Model #Distribution ML

CCD

DL

Method VFL ALMITY CTMclient CTMall VFL+Oversampling ALMITY+Oversampling CTMclient+Oversampling CTMall+Oversampling

Precision (%) 94.7 95.7 0.0 85.2 83.7 86.6 67.9 58.8
Recall (%) 61.0 70.0 0.0 61.0 83.1 92.1 27.5 84.2

F1-score (%) 74.2 80.7 0.0 72.2 84.9 89.2 36.9 69.3
AUC (%) 80.0 84.5 0.0 79.5 89.8 94.3 67.2 84.8

G-Mean (%) 77.8 83.2 0.0 77.3 89.5 94.2 51.1 84.8
Pfa (%) 0.8 0.8 0.0 2.0 3.4 6.6 13.1 4.4

ML

Precision (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Recall (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

F1-score (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AUC (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

G-Mean (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pfa (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DP

DL

Precision (%) 0.0 0.0 0.0 0.0 86.4 92.8 59.4 67.9
Recall (%) 0.0 0.0 0.0 0.0 40.0 62.0 41.4 51.8

F1-score (%) 0.0 0.0 0.0 0.0 54.8 74.3 48.8 58.8
AUC (%) 0.0 0.0 0.0 0.0 67.5 79.1 59.4 66.1

G-Mean (%) 0.0 0.0 0.0 0.0 61.7 77.2 56.6 64.5
Pfa (%) 0.0 0.0 0.0 0.0 5.1 3.8 19.6 22.7

CostEffect@5% (%) 0.0 0.0 0.0 0.0 32.0 40.9 35.1 38.3
Popt@5% (%) 0.0 0.0 0.0 0.0 33.8 45.1 36.2 41.6

CostEffect@20% (%) 0.0 0.0 0.0 0.0 33.8 40.4 33.5 38.7
Popt@20% (%) 0.0 0.0 0.0 0.0 33.5 40.5 33.0 38.3

ML

Precision (%) 36.7 33.3 35.3 66.7 37.9 31.7 32.1 25.0
Recall (%) 88.3 68.8 97.7 16.7 86.0 63.8 81.8 30.2

F1-score (%) 51.9 28.6 51.9 26.7 52.7 32.4 46.2 27.4
AUC (%) 56.7 55.1 54.8 57.3 58.5 53.2 49.6 54.0

G-Mean (%) 47.1 50.6 34.2 40.4 51.5 52.1 37.7 48.5
Pfa (%) 74.9 23.1 88.0 2.0 69.1 57.4 49.6 22.3

CCD DL Cliff’s d 0.56 — 1.0 0.56 0.56 — 1.0 0.89
ML Cliff’s d 0.22 — 0.22 0.22 0.22 — 0.44 0.0

DP DL Cliff’s d 0.33 — 0.56 0.33 1.0 — 1.0 1.0
ML Cliff’s d 1.0 — 1.0 0.56 0.56 — 1.0 0.78
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TABLE V
THE PERFORMANCE OF VARIOUS TRAINING METHODS ON DATASETS WITH LOW SCALE AND DIVERSE DATA BALANCE DISTRIBUTIONS

Task Model Distribution LH

CCD

DL

Method VFL ALMITY CTMclient CTMall VFL+Oversampling ALMITY+Oversampling CTMclient+Oversampling CTMall+Oversampling

Precision (%) 87.8 89.1 0.0 88.9 80.4 83.3 55.1 71.1
Recall (%) 80.0 91.1 0.0 87.9 88.2 93.2 27.1 65.2

F1-score (%) 83.7 90.1 0.0 88.4 84.1 88.0 36.4 68.0
AUC (%) 86.3 91.9 0.0 91.8 91.4 94.3 60.8 72.1

G-Mean (%) 86.1 91.9 0.0 91.7 91.4 94.3 50.6 71.8
Pfa (%) 7.4 7.4 0.0 9.1 5.4 4.6 5.5 20.9

ML

Precision (%) 79.3 57.1 53.8 67.9 55.8 51.0 50.0 51.0
Recall (%) 9.0 10.0 4.4 9.1 51.6 55.6 24.0 65.2

F1-score (%) 16.1 17.0 8.1 16.1 53.6 57.6 32.4 57.3
AUC (%) 58.5 64.5 50.3 58.0 58.4 59.0 57.3 56.7

G-Mean (%) 29.7 30.9 20.5 29.7 57.1 57.6 43.8 57.1
Pfa (%) 1.9 4.3 3.8 3.4 35.6 37.5 20.0 50.0

DP

DL

Precision (%) 53.2 50.0 0.0 71.4 53.5 62.9 50.3 50.5
Recall (%) 20.0 34.6 0.0 1.6 43.1 54.8 23.8 36.0

F1-score (%) 29.1 40.9 0.0 3.2 50.9 58.6 32.3 42.0
AUC (%) 51.2 52.8 0.0 50.6 54.5 54.5 52.1 53.9

G-Mean (%) 40.6 49.6 0.0 12.7 50.9 57.7 43.7 50.8
Pfa (%) 17.6 29.0 0.0 0.5 24.0 20.8 19.6 28.3

CostEffect@5% (%) 25.0 28.1 0.0 0.0 36.1 63.6 17.8 44.4
Popt@5% (%) 27.2 30.4 0.0 0.0 39.2 66.6 17.5 39.2

CostEffect@20% (%) 18.6 25.7 0.0 2.4 31.6 56.2 19.2 29.8
Popt@20% (%) 20.3 26.1 0.0 2.6 33.0 57.5 18.7 30.7

ML

Precision (%) 42.3 42.2 46.1 41.7 55.7 55.1 55.8 56.6
Recall (%) 61.1 66.0 89.4 38.0 89.6 76.0 98.9 94.3

F1-score (%) 50.0 58.7 60.9 39.8 68.7 63.9 71.4 70.7
AUC (%) 47.9 59.5 53.5 42.5 59.2 57.0 60.3 60.9

G-Mean (%) 46.1 47.0 39.7 42.3 50.8 53.7 46.5 51.0
Pfa (%) 65.2 63.0 82.3 53.0 71.3 62.0 78.2 72.4

Task Model #Distribution LM

CCD

DL

Method VFL ALMITY CTMclient CTMall VFL+Oversampling ALMITY+Oversampling CTMclient+Oversampling CTMall+Oversampling

Precision (%) 84.6 86.8 0.0 0.0 65.5 83.9 50.0 71.6
Recall (%) 50.0 65.0 0.0 0.0 86.4 76.5 17.6 58.5

F1-score (%) 62.9 74.5 0.0 0.0 62.9 80.0 26.1 64.4
AUC (%) 73.5 77.0 0.0 0.0 85.8 86.1 54.4 74.8

G-Mean (%) 69.7 72.2 0.0 0.0 85.8 86.0 40.1 73.0
Pfa (%) 2.9 1.0 0.0 0.0 14.7 4.2 8.8 8.9

ML

Precision (%) 0.0 0.0 0.0 0.0 63.6 62.5 50.0 66.7
Recall (%) 0.0 0.0 0.0 0.0 3.8 5.0 2.9 4.2

F1-score (%) 0.0 0.0 0.0 0.0 7.2 9.3 5.4 7.8
AUC (%) 0.0 0.0 0.0 0.0 57.3 59.2 66.7 56.5

G-Mean (%) 0.0 0.0 0.0 0.0 19.3 22.1 16.8 20.2
Pfa (%) 0.0 0.0 0.0 0.0 1.7 2.1 1.4 1.7

DP

DL

Precision (%) 0.0 100.0 0.0 0.0 64.8 69.5 54.4 53.3
Recall (%) 0.0 3.2 0.0 0.0 32.0 37.6 23.7 20.9

F1-score (%) 0.0 6.3 0.0 0.0 42.8 49.6 33.0 30.0
AUC (%) 0.0 51.6 0.0 0.0 59.1 58.9 56.9 53.1

G-Mean (%) 0.0 18.0 0.0 0.0 52.5 58.5 44.7 42.2
Pfa (%) 0.0 0.2 0.0 0.0 13.9 9.8 15.9 14.7

CostEffect@5% (%) 0.0 0.0 0.0 0.0 44.5 52.9 27.0 34.3
Popt@5% (%) 0.0 0.0 0.0 0.0 42.8 49.9 28.6 32.3

CostEffect@20% (%) 0.0 12.5 0.0 0.0 45.4 53.4 22.3 40.0
Popt@20% (%) 0.0 12.3 0.0 0.0 45.3 52.3 22.1 32.4

ML

Precision (%) 47.7 45.5 40.5 28.7 23.8 31.5 35.7 28.6
Recall (%) 78.0 89.1 87.5 70.0 83.3 85.7 83.3 33.3

F1-score (%) 59.2 60.3 55.4 40.8 37.0 46.2 50.0 30.8
AUC (%) 53.3 58.0 52.8 50.3 56.8 58.6 52.5 53.8

G-Mean (%) 47.2 48.9 39.7 46.3 50.3 52.0 42.6 45.1
Pfa (%) 71.4 73.1 82.0 69.3 69.6 68.4 78.3 21.7

Task Model #Distribution LL

CCD

DL

Method VFL ALMITY CTMclient CTMall VFL+Oversampling ALMITY+Oversampling CTMclient+Oversampling CTMall+Oversampling

Precision (%) 0.0 0.0 0.0 0.0 59.4 74.1 0.0 36.0
Recall (%) 0.0 0.0 0.0 0.0 76.0 80.0 0.0 68.5

F1-score (%) 0.0 0.0 0.0 0.0 66.7 76.9 0.0 47.2
AUC (%) 0.0 0.0 0.0 0.0 81.6 86.6 0.0 69.2

G-Mean (%) 0.0 0.0 0.0 0.0 81.4 86.3 0.0 69.2
Pfa (%) 0.0 0.0 0.0 0.0 12.6 6.9 0.0 10.1

ML

Precision (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Recall (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

F1-score (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AUC (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

G-Mean (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pfa (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DP

DL

Precision (%) 0.0 0.0 0.0 0.0 75.4 88.3 45.8 47.2
Recall (%) 0.0 0.0 0.0 0.0 32.3 37.5 34.8 32.5

F1-score (%) 0.0 0.0 0.0 0.0 45.2 52.6 39.6 38.1
AUC (%) 0.0 0.0 0.0 0.0 51.9 66.8 51.0 53.8

G-Mean (%) 0.0 0.0 0.0 0.0 54.4 60.0 38.3 40.5
Pfa (%) 0.0 0.0 0.0 0.0 8.4 4.0 32.9 6.9

CostEffect@5% (%) 0.0 0.0 0.0 0.0 47.6 65.5 37.6 25.0
Popt@5% (%) 0.0 0.0 0.0 0.0 50.5 67.5 41.7 28.7

CostEffect@20% (%) 0.0 0.0 0.0 0.0 44.3 57.9 38.7 12.5
Popt@20% (%) 0.0 0.0 0.0 0.0 46.0 59.1 40.0 26.7

ML

Precision (%) 20.0 40.5 25.0 46.2 32.7 34.0 33.2 36.3
Recall (%) 96.7 95.8 9.5 75.0 76.2 81.0 84.2 19.0

F1-score (%) 33.3 57.6 13.8 57.1 45.7 47.9 47.6 25.0
AUC (%) 56.5 56.9 51.3 69.1 50.2 52.5 50.8 55.5

G-Mean (%) 36.1 37.1 29.7 36.8 42.9 44.2 38.2 41.9
Pfa (%) 87.0 80.2 6.9 19.0 75.9 75.8 82.7 8.0

CCD DL Cliff’s d 0.50 — 1.0 0.5 0.56 — 1.0 1.0
ML Cliff’s d 0.11 — 0.11 0.11 0.11 — 0.22 0.11

DP DL Cliff’s d 0.33 — 0.67 0.56 1.0 — 1.0 1.0
ML Cliff’s d 0.33 — 0.56 0.56 0.56 — 0.78 0.56
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TABLE VI
THE PERFORMANCE OF VARIOUS TRAINING METHODS ON DATASETS WITH DIVERSE DATA DISTRIBUTIONS

Task Model #Clients&Distribution 9 & HH, HM, HL, MH, MM, ML, LH, LM, LL

CCD

DL

Method VFL ALMITY CTMall VFL+Oversampling ALMITY+Oversampling CTMall+Oversampling

Precision (%) 87.7 89.4 91.3 80.9 96.7 72.4
Recall (%) 73.5 86.8 75.9 90.4 91.9 80.6

F1-score (%) 80.0 88.1 82.8 85.4 94.7 76.3
AUC (%) 84.2 90.8 88.8 87.9 94.4 81.9

G-Mean (%) 83.5 90.7 87.8 87.9 94.3 81.9
Pfa (%) 5.1 5.1 5.3 10.7 1.1 16.8

ML

Precision (%) 22.2 83.3 66.6 33.3 27.3 57.4
Recall (%) 5.9 6.7 5.7 11.8 17.6 13.0

F1-score (%) 9.3 12.4 10.5 17.4 21.4 21.1
AUC (%) 47.9 52.8 52.1 50.2 47.4 52.4

G-Mean (%) 23.0 25.7 23.7 32.3 36.9 34.5
Pfa (%) 10.0 1.1 1.4 11.4 12.8 8.1

DP

DL

Precision (%) 66.7 55.9 53.8 69.0 71.6 56.4
Recall (%) 14.5 15.2 12.5 45.9 53.0 41.7

F1-score (%) 21.8 23.9 21.6 55.1 64.2 47.9
AUC (%) 52.4 54.6 53.7 64.7 67.7 57.9

G-Mean (%) 35.2 37.8 35.6 61.9 64.2 55.6
Pfa (%) 7.7 6.0 11.2 16.5 9.6 26.1

CostEffect@5% (%) 9.7 17.9 13.6 38.7 50.7 38.5
Popt@5% (%) 9.0 17.7 14.6 40.4 51.4 39.5

CostEffect@20% (%) 2.2 13.9 16.4 40.0 52.6 40.4
Popt@20% (%) 5.0 16.3 17.0 40.2 52.7 41.2

ML

Precision (%) 48.9 49.0 33.3 37.7 44.1 33.8
Recall (%) 26.5 38.3 27.3 90.9 49.4 86.5

F1-score (%) 34.4 42.9 30.0 53.3 46.6 52.6
AUC (%) 51.6 53.0 56.8 58.0 49.4 57.2

G-Mean (%) 45.1 50.9 48.5 47.6 49.4 47.5
Pfa (%) 23.2 32.3 13.6 75.0 50.6 55.4

CCD DL Cliff’s d 1.0 — 1.0 1.0 — 1.0
ML Cliff’s d 1.0 — 1.0 1.0 — 1.0

DP DL Cliff’s d 1.0 — 1.0 1.0 — 1.0
ML Cliff’s d 1.0 — 1.0 1.0 — 1.0

Even in cases where ALMITY cannot achieve satisfactory
performance, such as a G-Mean of 0.0, it still surpasses
the baselines’ performance after the application of the
oversampling technique.

6) Experiment 1: The oversampling technique yields
performance enhancements of varying degrees for
training methods within diverse data distribu-
tions. Examining Tables III to V, we can discern that
in relatively balanced datasets like the HH data distri-
bution, the oversampling technique yields only marginal
performance improvements in learning-based models,
particularly deep learning (DL) models, across two eval-
uation tasks. Conversely, in significantly skewed data
distributions, the oversampling technique elevates model
performance. For example, consider the HH data dis-
tribution where ML models demonstrate only marginal
performance enhancements, typically in the range of
3-4%, when incorporating the oversampling technique in
the CCD task. The DL-based clone detector experiences
a slight performance decline after its application. One
possible explanation for this decline in performance is
that the oversampling technique leads to an abundance
of duplicated samples in the dataset, causing overfitting
of the DL model during training. Conversely, within the
LH data distribution, the oversampling technique leads

to substantial improvements. Specifically, it results in a
remarkable 20% boost in performance for the ML-based
clone detector in terms of G-Mean, while the oversam-
pling technique makes approximately 10% and over 5%
enhancements for DL-based and ML-based defect pre-
dictors, respectively. Note that the strong performance of
the DL-based clone detector in skewed data distributions
can be attributed to the CCD task’s inherent character-
istics. Even within datasets exhibiting substantial skew,
a enough number of data instances exist for each class,
enabling the DL model to proficiently acquire the ca-
pability to distinguish between clones and non-clones.
This underscores the notion that identifying similar code
fragments is not a challenging task for DL models.

7) Experiment 2: Despite the involvement of multiple
datasets with diverse data distributions in training
learning-based models, ALMITY remains effective in
enhancing the overall performance of these models.
In real-world applications, client-side datasets within the
FL-based framework frequently encompass diverse data
distributions, encompassing variations in both data scale
and data balance attributes. To illustrate the utility and
effectiveness of ALMITY in such scenarios, we conduct
an evaluation of various training methods on datasets in-
volving all these data distributions concurrently. ALMITY
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consistently empowers both ML and DL models to out-
perform the baselines, as evidenced by the uniformly high
Cliff’s d values observed in both the CCD and DP tasks.

8) Experiments 1 and 2: In most instances, ALMITY

outperforms VFL and CTM training methods in
terms of effort-aware metrics. From these four tables,
we can observe that ALMITY achieves higher CostEffort
and Popt values than baselines. This is attributed to the
better performance of ALMITY in AUC and G-Mean. As
more defects are identified from datasets by ALMITY, the
effort-aware metrics naturally increase. While CTMall

may occasionally yield higher effort-aware metric val-
ues than ALMITY, it is important to note that CTMall is
not a realistic scenario. In practice, different clients in
ALMITY often represent distinct organizations or compa-
nies, and integrating their proprietary industrial datasets
is unfeasible.

9) Statistical test analysis: ALMITY’s performance in
training learning-based models exhibits statistical
significance when compared to the baseline methods
in both CCD and DP tasks. Table VII reveals that while
ALMITY’s performance may not much exceed that of the
baselines in certain distributions, all p-values resulting
from pairwise comparisons between ALMITY and each
baseline method are below 0.05. The highest p-value
obtained from the pairwise analysis between ALMITY and
VFL’s performance on the DL-based defect predictor is
4.14× 10−2. This shows that the null hypothesis that
ALMITY cannot achieve better performance than baselines
can be rejected at a confidence level of 5% in favor of
the alternative that ALMITY would tend to achieve better
performance than baseline training methods. Therefore,
we can conclude that ALMITY’s performance in training
learning-based models is statistically superior to that of
the baseline methods for both CCD and DP tasks.

✍ RQ-2 � We have undertaken comprehensive experi-
ments to assess the effectiveness of employing ALMITY for
training DL and ML models across a spectrum of diverse
data distributions. The experimental outcomes reveal that
ALMITY surpasses the performance of baseline methods
in both evaluation tasks. ALMITY enhances model perfor-
mance across nearly all data distributions, thereby sub-
stantiating the effectiveness of our parameter aggregation
strategy. Furthermore, to substantiate ALMITY’s proficiency
in handling complex real-world datasets, we conduct exper-
iments validating its effectiveness across task-specific data
distributions and on multiple datasets featuring a variety
of data distribution types. �

VII. RQ-3: HOW DO INDIVIDUAL ATTRIBUTES AFFECT

ALMITY’S EFFECTIVENESS?

Motivation. Our parameter aggregation strategy has been
meticulously crafted by strategically integrating three distinct
attributes. As a result, in this RQ, we undertake ablation

experiments to scrutinize the individual impact of each attribute
on ALMITY’s performance.

Method. To accomplish the objectives of this RQ, we have
conducted three rounds of experiments. In each experimen-
tal round, we systematically exclude one attribute from our
parameter aggregation strategy to evaluate its specific im-
pact on the performance of ALMITY. For example, given that
our aggregation strategy relies on the interaction of three
parameters—namely, data scale, data balance, and minority
class learnability attributes—we proceed to investigate the im-
pact of the data scale attribute by temporarily removing it
and thus modifying our strategy into the integration of the
remaining two attributes. Hence, a low performance indi-
cates the high significance of a particular attribute within our
aggregation strategy.

We conduct these three rounds of experiments across six
distinct data distributions. Specifically, we employ the HH and
MM data distributions to gauge the influence of each attribute
on datasets with comparable data size and balance. The HM and
HL data distributions are chosen to assess attribute performance
in datasets characterized by lower data balance, while the MH
and LH data distributions allow us to evaluate each attribute’s
impact on datasets with diminished data scale. Additionally,
among these six data distributions, two pairs exhibit opposing
characteristics: the HM and MH data distributions, as well as the
HL and LH data distributions. Note that the LM, ML, and LL
data distributions are excluded from our experiments due to the
absence of minority class instances or all-class data instances in
these distributions, making it impractical to measure the impact
of each attribute.

Metrics. In this RQ, we utilize a consistent set of evaluation
metrics, as employed in the preceding two RQs. These metrics
include Precision, Recall, F1-score, AUC, G-Mean, and the
Probability of False Alarm (Pfa) to gauge the model’s per-
formance. Furthermore, we extend our analysis to encompass
cost-effectiveness, as measured by the metrics CostEffect and
Popt at both 5% and 20%, specifically within the context of
code churn.

Results. Drawing conclusions from the experimental results
presented in Table VIII, we can summarize as follows:

1) Together, these three indicators contribute positively
to our parameter aggregation strategy. Referencing
Table VIII, across all types of data distributions, it is
evident that the performance of ALMITY on both ML and
DL models consistently diminishes regardless of which
attribute is excluded from the aggregation strategy. As
an illustration, considering the HH data distribution, the
performance of ALMITY exhibits a reduction of at least
4% and 2% on ML models, and an average decrease
of approximately 2% and 3% on DL models in these
two evaluation tasks, respectively. Furthermore, in the
HL data distribution, when any attribute is omitted from
the parameter strategy, ALMITY fails to correctly identify
defects and clones from the corresponding datasets using
DL models, resulting in a G-Mean of 0.0. These observa-
tions confirm the pivotal role played by all three attributes
within our parameter strategy.
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TABLE VII
WILCOXON SIGNED-RANK TEST PAIRWISE ANALYSIS ON THE PERFORMANCE OF DIFFERENT TRAINING METHODS ACROSS DIVERSE

DATA DISTRIBUTIONS

Task Model Methods p-value Methods p-value

CCD

DL
ALMITY & VFL 0.45× 10−2 ALMITY + oversampling & VFL + oversampling 0.19× 10−2

ALMITY & CTMsingle 0.45× 10−2 ALMITY + oversampling & CTMsingle + oversampling 0.19× 10−2

ALMITY & CTMall 0.89× 10−2 ALMITY + oversampling & CTMall + oversampling 0.58× 10−2

ML
ALMITY & VFL 1.73× 10−2 ALMITY + oversampling & VFL + oversampling 1.02× 10−2

ALMITY & CTMsingle 1.73× 10−2 ALMITY + oversampling & CTMsingle + oversampling 1.02× 10−2

ALMITY & CTMall 1.73× 10−2 ALMITY + oversampling & CTMall + oversampling 3.26× 10−2

DP

DL
ALMITY & VFL 4.14× 10−2 ALMITY + oversampling & VFL + oversampling 0.19× 10−2

ALMITY & CTMsingle 0.40× 10−2 ALMITY + oversampling & CTMsingle + oversampling 0.19× 10−2

ALMITY & CTMall 0.40× 10−2 ALMITY + oversampling & CTMall + oversampling 0.19× 10−2

ML
ALMITY & VFL 0.19× 10−2 ALMITY + oversampling & VFL + oversampling 0.19× 10−2

ALMITY & CTMsingle 0.19× 10−2 ALMITY + oversampling & CTMsingle + oversampling 0.19× 10−2

ALMITY & CTMall 0.19× 10−2 ALMITY + oversampling & CTMall + oversampling 0.19× 10−2

2) Of these three attributes, the data scale attribute
exerts the most significant impact on the parameter
aggregation strategy. According to Table VIII, in both
the CCD and DP tasks, ALMITY’s performance expe-
riences a decline when dealing with data distributions
characterized by low data scales. For instance, consider
the MH data distribution, where the data scale is slightly
lower than the data balance value. Upon removing the
influence of the data scale attribute, ALMITY’s perfor-
mance in this distribution registers its lowest point, with a
G-Mean decrease of over 11% in the DP task. This em-
phasizes the substantial impact of the data scale attribute
within the aggregation strategy. Besides, in data distribu-
tions with comparable data scale and data balance values,
such as the HH and MM distributions, excluding the data
scale attribute still leads to a substantial performance drop
for ALMITY. For example, in the MM data distribution,
ALMITY’s performance without the data scale attribute
reaches only 0.0% and 40.7% in terms of G-Mean for
the CCD and DP tasks, respectively.

3) Generally, when an attribute exhibits lower val-
ues within the data distribution, it tends to
have a more pronounced impact on ALMITY’s
performance. As elucidated in the previous discovery,
in data distributions characterized by low data scales,
the removal of the data scale attribute has the most
significant impact on ALMITY’s overall performance.
Similarly, in data distributions with low data balance,
the data balance attribute demonstrates an important in-
fluence on ALMITY’s performance. For instance, in the
DP task, within the HM data distribution, the exclu-
sion of the data balance attribute results in an 11.1%
decline in ALMITY’s performance on the DL model.
These findings collectively underscore that when an at-
tribute exhibits lower values within a data distribution,
this attribute tends to exert a more noticeable impact on
ALMITY’s performance.

4) The minority class learnability attribute is influenced
by both the data scale and data balance values
within the data distribution. When dealing with
data distributions that have comparable data scales

and data balances, the minority class learnability
attribute primarily affects ALMITY’s performance. It
is readily comprehensible that the minority class learn-
ability attribute is influenced by both the data scale and
data balance values within a given data distribution. This
is attributed to the fluctuations in the number of minority
class data instances within a dataset, which occur as a
consequence of changes in data scale and data balance
within the dataset. Drawing insights from the experi-
mental results presented in Table VIII, in the CCD and
DP tasks, we observe that within the HH and MM data
distributions, characterized by comparable data scale and
data balance, ALMITY exhibits its poorest performance
on both ML and DL models when the minority class
learnability attribute is removed.

✍ RQ-3 � In this RQ, we have observed that each
attribute contributes positively to ALMITY’s performance,
highlighting the essential role of these three attributes
within our aggregation strategy. Furthermore, we note
that each attribute exhibits a more pronounced impact on
specific data distribution types, with the data scale attribute
having a relatively significant influence among the three. �

VIII. DISCUSSION

In this section, based on the insights gained from ALMITY,
we explore extensive application scenarios of our approach. In
addition, we delineate the usage limitations of ALMITY.

Application Scenarios. We explore the potential real-world
applications of ALMITY. It stands out as a task-agnostic and
model-agnostic training framework, characterized by the fol-
lowing key attributes:

1) Binary Classification-Specific: ALMITY is tailored for
binary classification tasks. It can be effectively employed
in various tasks, such as code classification, vulnerability
detection, etc.

2) Model-Agnostic: ALMITY can be integrated into vari-
ous learning-based models, encompassing both ML and
DL models. Nevertheless, it is important to highlight
that, like other FL-based frameworks, ALMITY requires
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TABLE VIII
ABLATION EXPERIMENTS: THE IMPACT OF EACH ATTRIBUTE ON THE PERFORMANCE OF ALMITY

Model Task Distribution HH Model Task Distribution HH

DL

CCD

Method ALMITY –Data Scale –Data Balance –Data Learnability

ML

CCD

Method ALMITY –Data Scale –Data Balance –Data Learnability

Precision (%) 96.3 95.5 95.6 95.5 Precision (%) 49.2 47.8 53.5 53.3
Recall (%) 93.8 91.3 91.6 91.3 Recall (%) 51.8 67.5 37.3 33.3

F1-score (%) 95.0 93.4 93.6 93.3 F1-score (%) 50.4 56.0 43.9 41.0
AUC (%) 95.6 93.9 93.9 93.8 AUC (%) 56.8 57.5 57.1 55.0

G-Mean (%) 95.6 93.9 93.9 93.8 G-Mean (%) 56.6 55.8 53.5 50.6
Pfa (%) 2.5 3.6 3.8 3.6 Pfa (%) 38.1 52.5 23.1 23.3

DP

Precision (%) 59.0 58.6 64.2 54.1

DP

Precision (%) 59.9 40.0 44.2 44.6
Recall (%) 51.7 43.4 43.7 43.0 Recall (%) 56.5 69.2 47.5 78.4

F1-score (%) 55.1 49.9 52.0 47.9 F1-score (%) 52.2 50.7 45.8 56.9
AUC (%) 63.0 60.0 60.8 57.5 AUC (%) 57.0 58.7 53.2 54.6

G-Mean (%) 62.0 57.6 58.3 55.7 G-Mean (%) 57.0 53.6 54.9 51.1
Pfa (%) 25.6 23.6 22.0 27.9 Pfa (%) 45.8 57.6 41.1 69.2

CostEffect@5% 37.5 36.0 36.8 32.5 CostEffect@5% — — — —
Popt@5% 42.5 41.3 42.0 36.4 Popt@5% — — — —

CostEffect@20% 39.1 37.0 39.0 33.6 CostEffect@20% — — — —
Popt@20% 37.9 36.4 37.4 32.9 Popt@20% — — — —

Model Task Distribution MM Model Task Distribution MM

DL

CCD

Method ALMITY –Data Scale –Data Balance –Data Learnability

ML

CCD

Method ALMITY –Data Scale –Data Balance –Data Learnability

Precision (%) 93.3 87.5 90.9 94.4 Precision (%) 50.0 0.0 100.0 0.0
Recall (%) 86.4 86.4 86.4 82.7 Recall (%) 7.5 0.0 3.8 0.0

F1-score (%) 89.7 87.0 88.6 88.2 F1-score (%) 13.0 0.0 7.2 0.0
AUC (%) 92.0 90.8 91.5 90.4 AUC (%) 52.7 0.0 51.9 0.0

G-Mean (%) 91.9 90.7 91.4 90.0 G-Mean (%) 27.1 0.0 19.4 0.0
Pfa (%) 2.5 4.9 3.4 2.0 Pfa (%) 1.3 0.0 0.0 0.0

DP

Precision (%) 81.8 0.0 33.3 40.0

DP

Precision (%) 33.3 20.5 20.9 20.9
Recall (%) 11.5 0.0 1.6 1.6 Recall (%) 30.8 69.2 69.2 69.2

F1-score (%) 20.2 0.0 3.1 3.1 F1-score (%) 32.0 31.6 32.1 31.6
AUC (%) 55.3 0.0 50.0 50.2 AUC (%) 56.7 46.6 47.7 46.6

G-Mean (%) 33.8 0.0 12.5 12.6 G-Mean (%) 50.4 40.7 42.5 40.7
Pfa (%) 0.8 0.0 1.6 1.2 Pfa (%) 17.3 76.1 73.9 76.1

CostEffect@5% 5.3 0.0 0.0 0.0 CostEffect@5% — — — —
Popt@5% 7.3 0.0 0.0 0.0 Popt@5% — — — —

CostEffect@20% 12.5 0.0 8.5 9.3 CostEffect@20% — — — —
Popt@20% 13.3 0.0 8.5 9.3 Popt@20% — — — —

Model Task Distribution HM Model Task Distribution HM

DL

CCD

Method ALMITY –Data Scale –Data Balance –Data Learnability

ML

CCD

Method ALMITY –Data Scale –Data Balance –Data Learnability

Precision (%) 92.1 88.9 91.4 86.5 Precision (%) 44.6 49.5 37.9 70.9
Recall (%) 86.9 85.0 80.4 85.0 Recall (%) 38.0 27.5 84.6 17.2

F1-score (%) 89.4 86.9 85.5 85.7 F1-score (%) 41.0 35.4 52.4 27.7
AUC (%) 92.0 90.7 89.1 90.2 AUC (%) 49.0 53.8 53.2 57.2

G-Mean (%) 91.8 90.5 88.7 90.1 G-Mean (%) 47.8 46.9 42.8 40.8
Pfa (%) 2.9 3.5 2.2 4.4 Pfa (%) 39.9 20.0 78.3 2.8

DP

Precision (%) 64.7 55.6 53.8 63.6

DP

Precision (%) 34.1 48.3 46.8 32.1
Recall (%) 10.6 6.0 5.0 5.0 Recall (%) 77.5 80.6 27.5 78.7

F1-score (%) 18.2 10.8 9.2 9.3 F1-score (%) 47.3 60.4 34.6 45.7
AUC (%) 54.3 52.3 51.4 51.8 AUC (%) 58.7 56.6 57.5 56.1

G-Mean (%) 32.2 24.2 22.1 22.2 G-Mean (%) 53.7 52.2 49.1 51.3
Pfa (%) 1.9 1.3 2.1 1.4 Pfa (%) 60.0 67.4 12.5 66.5

CostEffect@5% 11.9 11.9 11.9 11.9 CostEffect@5% — — — —
Popt@5% 8.1 8.0 8.0 8.0 Popt@5% — — — —

CostEffect@20% 9.1 7.9 5.5 4.8 CostEffect@20% — — — —
Popt@20% 8.9 7.7 5.5 4.8 Popt@20% — — — —

Model Task Distribution MH Model Task Distribution MH

DL

CCD

Method ALMITY –Data Scale –Data Balance –Data Learnability

ML

CCD

Method ALMITY –Data Scale –Data Balance –Data Learnability

Precision (%) 93.7 87.9 91.8 95.3 Precision (%) 56.9 69.0 22.2 56.5
Recall (%) 90.6 87.9 90.1 87.3 Recall (%) 33.0 12.9 62.5 26.0

F1-score (%) 92.1 87.9 91.0 91.0 F1-score (%) 41.8 21.8 32.8 35.6
AUC (%) 92.8 89.3 91.7 91.9 AUC (%) 56.5 54.2 50.0 55.9

G-Mean (%) 92.7 89.3 91.7 91.8 G-Mean (%) 51.4 35.1 48.4 47.2
Pfa (%) 5.1 9.3 6.7 3.4 Pfa (%) 11.4 4.6 62.5 14.3

DP

Precision (%) 66.7 55.8 56.6 54.3

DP

Precision (%) 48.2 48.4 44.9 44.2
Recall (%) 46.2 33.3 42.1 35.4 Recall (%) 45.0 86.1 69.2 47.5

F1-score (%) 54.5 41.7 48.2 42.9 F1-score (%) 46.6 62.0 54.4 45.8
AUC (%) 64.9 56.5 57.6 56.2 AUC (%) 55.9 57.2 55.4 53.2

G-Mean (%) 62.1 51.5 55.4 52.2 G-Mean (%) 54.9 49.3 54.4 52.9
Pfa (%) 16.4 20.3 26.9 23.0 Pfa (%) 47.3 71.7 58.3 41.1

CostEffect@5% 54.3 35.1 54.1 53.6 CostEffect@5% — — — —
Popt@5% 52.9 37.2 51.3 51.6 Popt@5% — — — —

CostEffect@20% 45.8 38.2 45.0 42.8 CostEffect@20% — — — —
Popt@20% 47.0 37.5 45.2 45.5 Popt@20% — — — —

Model Task Distribution HL Model Task Distribution HL

DL

CCD

Method ALMITY –Data Scale –Data Balance –Data Learnability

ML

CCD

Method ALMITY –Data Scale –Data Balance –Data Learnability

Precision (%) 98.6 95.6 93.5 93.5 Precision (%) 0.0 0.0 0.0 0.0
Recall (%) 83.3 77.8 76.3 76.3 Recall (%) 0.0 0.0 0.0 0.0

F1-score (%) 90.6 85.7 84.1 84.1 F1-score (%) 0.0 0.0 0.0 0.0
AUC (%) 91.8 88.4 87.5 87.5 AUC (%) 0.0 0.0 0.0 0.0

G-Mean (%) 91.4 87.7 86.8 86.8 G-Mean (%) 0.0 0.0 0.0 0.0
Pfa (%) 0.3 8.7 13.1 13.1 Pfa (%) 0.0 0.0 0.0 0.0

DP

Precision (%) 64.3 0.0 0.0 0.0

DP

Precision (%) 16.9 30.8 0.0 60.0
Recall (%) 3.2 0.0 0.0 0.0 Recall (%) 19.6 8.0 0.0 6.0

F1-score (%) 6.4 0.0 0.0 0.0 F1-score (%) 18.2 12.7 0.0 10.9
AUC (%) 50.6 0.0 0.0 0.0 AUC (%) 47.8 51.8 0.0 52.5

G-Mean (%) 16.7 0.0 0.0 0.0 G-Mean (%) 38.6 27.6 0.0 24.4
Pfa (%) 2.2 0.0 0.0 0.0 Pfa (%) 7.0 4.5 0.0 1.0

CostEffect@5% 6.3 0.0 0.0 0.0 CostEffect@5% — — — —
Popt@5% 2.4 0.0 0.0 0.0 Popt@5% — — — —

CostEffect@20% 2.3 0.0 0.0 0.0 CostEffect@20% — — — —
Popt@20% 2.7 0.0 0.0 0.0 Popt@20% — — — —

Model Task Distribution LH Model Task Distribution LH

DL

CCD

Method ALMITY –Data Scale –Data Balance –Data Learnability

ML

CCD

Method ALMITY –Data Scale –Data Balance –Data Learnability

Precision (%) 89.1 82.9 87.0 86.7 Precision (%) 57.1 50.0 50.0 66.7
Recall (%) 91.1 64.4 88.9 86.7 Recall (%) 10.0 1.2 9.8 4.9

F1-score (%) 90.1 72.5 87.9 86.7 F1-score (%) 17.0 2.4 16.3 9.1
AUC (%) 91.9 77.8 90.0 88.9 AUC (%) 64.5 50.3 52.0 51.7

G-Mean (%) 91.9 76.7 90.0 88.9 G-Mean (%) 30.9 11.0 30.3 21.9
Pfa (%) 7.4 8.8 8.8 8.8 Pfa (%) 4.3 0.7 5.7 1.4

DP

Precision (%) 50.0 50.0 57.6 43.9

DP

Precision (%) 42.2 41.6 37.9 42.3
Recall (%) 34.6 26.8 30.4 28.1 Recall (%) 66.0 90.9 84.6 61.1

F1-score (%) 40.9 34.9 39.8 34.3 F1-score (%) 58.7 57.1 52.4 50.0
AUC (%) 52.8 54.5 54.0 53.5 AUC (%) 59.5 53.5 53.2 47.9

G-Mean (%) 49.6 47.0 48.6 47.1 G-Mean (%) 47.0 38.1 42.9 46.1
Pfa (%) 29.0 17.7 22.4 21.1 Pfa (%) 63.0 84.0 78.3 65.2

CostEffect@5% 28.1 25.0 34.3 28.1 CostEffect@5% — — — —
Popt@5% 30.4 27.3 39.9 30.3 Popt@5% — — — —

CostEffect@20% 25.7 23.2 29.6 24.1 CostEffect@20% — — — —
Popt@20% 26.1 23.9 31.8 25.3 Popt@20% — — — —
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all clients to deploy identical models for proper func-
tioning; deviations from this standard can disrupt the
framework’s operation.

3) Sensitive-Agnostic: ALMITY is suitable for deployment
in sensitive fields with data scarcity. This is attributed
to the fact that ALMITY operates without the need for
sensitive information from datasets, such as detailed data
instances. It enhances the performance of learning-based
models with imbalanced datasets while minimizing the
demand for extensive data information, only requiring the
number of positives and negatives from datasets.

4) Participant-Agnostic: Our approach transcends the
boundaries of participants, extending beyond researchers
and industrial practitioners. ALMITY can be effectively
employed by diverse organizations seeking collaborative
global model training, including small enterprises, with-
out restriction.

What data should or should not be uploaded. Note
that in the practical implementation of ALMITY, a client is only
required to upload the model parameters after each training
round and the count of data instances for each class within
the corresponding client-side dataset. There is no necessity to
transmit specific data instances to the server. This is because
the information regarding the number of data instances for each
class within the dataset is sufficient for the server to calculate
the data scale, data balance, and minority class learnability at-
tributes. From this explanation, readers can readily discern that,
in comparison to the VFL framework, which necessitates clients
to transmit model parameters after each training round and the
total count of data instances within the client-side datasets,
ALMITY demands only a minimal increase in information trans-
mission but is capable of achieving superior performance in
training learning-based models.

Usage Limitations of ALMITY. Similar to other FL-based
frameworks, our approach assumes that the collaborated clients
share the same features, which causes the organizations hav-
ing different feature spaces might fail to directly apply our
approach in practice. In cases where sensitive data is inad-
vertently shared on the global server, the parameter aggre-
gation strategy in ALMITY, which does not necessitate any
sensitive information from datasets, ensures that this mistakenly
uploaded information remains unused, is not preserved, and
is promptly eliminated before the next round of data upload-
ing. Moreover, ALMITY offers users the flexibility to freely
define the minimum number of participating clients required
for ALMITY. Consequently, in situations where certain clients
encounter communication issues with the server, as long as
the number of clients engaged in regular communication ex-
ceeds the predefined threshold, the model will continue to
function seamlessly.

IX. THREATS TO VALIDITY

We identify the following threats to the validity of our study:
Threats to external validity primarily pertain to the quality

and generalizability of ALMITY. Our study involves evaluations
on two prominent SE tasks: code clone detection using the

BigCloneBench [44] dataset and software defect prediction
utilizing data from Devign [35]. Considering that ALMITY is
a task-agnostic framework, conducting additional case studies
on diverse datasets can further validate the generalizability of
our findings and the applicability of our model, ALMITY, across
different scenarios.

Threats to internal validity primarily relate to potential
errors in our model selection and parameter settings. We opt
for CodeBERT [37] as our pre-trained model, given its exten-
sive use in prior SE research [40] and its typical high perfor-
mance in downstream tasks [35], [57], [58]. While our results
have demonstrated strong performance with our framework,
ALMITY, future research could potentially enhance the model
by exploring alternative pre-trained models. Additionally, dif-
ferent parameters, such as the number of clients used within
ALMITY, can influence the effectiveness of the trained models.
To investigate the impact of these choices, we have conducted
experiments where we systematically increased or decreased
the number of clients, including 2, 3, 4, 5, and 6 clients, in
ALMITY framework (refer to Table I and Table II).

Threats to construct validity primarily concern the pos-
sibility of human errors. We have taken measures to mitigate
these threats by selecting highly experienced researchers to par-
ticipate in the user study and instructing them to independently
respond to the questions presented in our user study.

X. RELATED WORK

In this section, we will explain prior research in three aspects:
1) federated learning in software engineering, 2) code clone
detection, and 3) software defect prediction.

Federated Learning in Software Engineering. Exten-
sive prior research [21], [59] has been proposed to study the
application on federated learning, e.g., healthcare [60], [61],
finance [62], [63], and internet of things [64], [65]. Nonetheless,
only a small number of research works examine the application
of federated learning in software engineering. Abyane et al.
[66] conduct an empirical study to investigate the quality and
robustness of federated learning from multiple angles of attacks.
Motivated by the fact that web-services structure can provide
a means for robust integration of distributed data, Verma et al.
[67] implement a web service based federated learning frame-
work on enterprises using large-scale distributed data. Addition-
ally, the existing related works are conducted or implemented
in the use of direct federated learning frameworks. Note that
data in different organizations may suffer from heterogeneous
and imbalanced issues. Our study is the first work on the use
of federated learning on traditional software engineering tasks
while addressing the imbalanced data issue.

Code Clone Detection. Code clone detection is a typi-
cal software engineering task. Much prior research has been
proposed to detect code clones [68], [69]. Typically, these tech-
niques can be broken into five categories, Text-based, Token-
based, AST-based, Graph-based, and metric-based techniques.
Text-based techniques are first proposed to detect clones. In
the Text-based technique, the source code of a software sys-
tem is considered a sequence of raw strings. Many text-based
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clone detection techniques and tools, e.g., SDD [70], have been
proposed to detect clones. Token-based techniques use lexi-
cal tools to parse source programs into a sequence of lexical
tokens. CCFinder [71], and SourcererCC [72] are two typical
token-based clone detectors. AST-based techniques often apply
different parsers to transform source programs into abstract
syntax trees (AST). Deckard [4], and NiCad [73] are the most
popular AST-based clone detectors. Graph-based approaches
parse programs into a graph such as data flow and control flow,
to represent source code. Duplix [74] and GPLAG [75] are two
typical examples of graph-based tools. Metric-based techniques
extract metrics from direct source code or tree and graph rep-
resentation of source code. Oreo [76] and eMetrics [77] are
two metrics-based clone detectors. Recently, Liu et al. [78] find
that the lack of clone data of which the functionalities have
never been previously observed in the training dataset leads to
low performance of deep learning-based clone detectors. This
finding highlights the need for more real-world clone data to
improve the performance of clone detectors.

Software Defect Prediction. There exists a large body of
research aiming to predict software defects using product and
process metrics to build a model. The first work on software
defect perdition is proposed by Mockus and Weiss [79]. Mockus
and Weiss build a linear regression model to predict the proba-
bility of failure after code changes using change metrics includ-
ing code size, duration, diffusion, as well as the experience of
the developers. The discovered failure-inducing changes may
be incomplete. Therefore, Kamei et al. [80], [81], [82] perform
a series of works on commit-level defect prediction considering
more change metrics. Various kinds of complicated models,
e.g., Naive Bayes [6], support vector machines [83], random
forest [84], and deep learning-based models [85], have been
also applied for predicting software defects. Different from the
above research, our goal is not to create a novel prediction
model. Our work proposes a federated learning-based frame-
work ALMITY to help and improve the performance of software
defect prediction.

XI. CONCLUSION AND FUTURE WORK

To facilitate the comprehensive utilization of industrial-
sensitive data in bridging the gap between academic SE re-
search and industry applications, we introduce a collaborative
paradigm called ALMITY. It empowers sensitive datasets to
be fully harnessed for training highly effective learning-based
models even on skewed data distributions, all without the need
to address data privacy and security concerns. ALMITY is built
upon federated learning principles and enhances the parame-
ter aggregation strategy by incorporating three key attributes:
data scale, data balance, and minority class learnability. This
design is aimed at addressing the issue of low model perfor-
mance when trained on real-world skewed datasets. To assess
the effectiveness and generalizability of ALMITY, we conduct
extensive comparative experiments to evaluate the performance
of ML and DL models trained by different training methods.
We consider two commonly used training methods as base-
lines: centralized training method (CTM) and vanilla federated

learning method (VFL). These experiments are conducted
within the context of two well-studied SE tasks, i.e., the code
clone detection task and the defect prediction task. Furthermore,
to assess the practical applicability of ALMITY, we curate a
dataset collection encompassing diverse data distributions de-
rived from real-world task-specific scenarios. We proceed to
evaluate ALMITY’s performance across all types of data distri-
butions within this dataset collection. The experimental results
demonstrate that employing ALMITY enables learning-based
models, i.e., ML and DL models, to attain superior performance
on both academic and skewed datasets compared to baseline
methods. Our future work entails broadening our evaluation
scope to encompass additional SE tasks.
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