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Stack Overflow has been heavily used by software developers as a popular way to seek programming-related

information from peers via the internet. The Stack Overflow community recommends users to provide the

related code snippet when they are creating a question to help others better understand it and offer their help.

Previous studies have shown that a significant number of these questions are of low-quality and not attractive

to other potential experts in Stack Overflow. These poorly asked questions are less likely to receive useful

answers and hinder the overall knowledge generation and sharing process. Considering one of the reasons for

introducing low-quality questions in SO is that many developers may not be able to clarify and summarize the

key problems behind their presented code snippets due to their lack of knowledge and terminology related

to the problem, and/or their poor writing skills, in this study we propose an approach to assist developers

in writing high-quality questions by automatically generating question titles for a code snippet using a deep

sequence-to-sequence learning approach. Our approach is fully data-driven and uses an attention mechanism

to perform better content selection, a copy mechanism to handle the rare-words problem and a coverage

mechanism to eliminate word repetition problem. We evaluate our approach on Stack Overflow datasets over

a variety of programming languages (e.g., Python, Java, Javascript, C# and SQL) and our experimental results

show that our approach significantly outperforms several state-of-the-art baselines in both automatic and

human evaluation. We have released our code and datasets to facilitate other researchers to verify their ideas

and inspire the follow up work.
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1 INTRODUCTION

In recent years, question and answer (Q&A) platforms have become one of the most important user
generated content (UGC) portals. Compared with general Q&A sites such as Quora1 and Yahoo!
Answers2, Stack Overflow3 is a vertical domain Q&A site, its content covers the specific domain of
computer science and programming. Q&A sites, such as Stack Overflow, are quite open and have
little restrictions, which allow their users to post their problems in detail. Most of the questions
will be answered by users who are often domain experts.

Stack Overflow (SO) has been used by developers as one of the most common ways to seek
coding and related information on the web. Millions of developers now use Stack Overflow to
search for high-quality questions to their programming problems, and Stack Overflow has also
become a knowledge base for people to learn programming skills by browsing high-quality ques-
tions and answers. The success of Stack Overflow and of community-based question and answer
sites in general depends heavily on the will of the users to answer others’ questions. Intuitively,
an effectively written question can increase the chance of getting help. This is beneficial not only
for the information seekers, since it increases the likelihood of receiving support, but also for the
whole community as well, since it enhances the behavior of effective knowledge sharing. A high-
quality question is likely to obtain more attention from potential answerers. On the other hand,
low-quality questions may discourage potential helpers [3, 8, 34, 44, 47, 72].

To help users effectively write questions, Stack Overflow has developed a list of quality assur-
ance guidelines4 for community members. However, despite the detailed guidelines, a significant
number of questions submitted to SO are of low-quality [4, 12]. Previous research has provided
some insight into the analysis of question quality on Stack Overflow [3, 4, 11, 12, 14, 37, 42, 58,
73, 75]. Correa and Sureka [12] investigated closed questions on SO, which suggest that the good
question should contain enough code for others to reproduce the problem. Arora et al. [4] proposed
a novel method for improving the question quality prediction accuracy by making use of content
extracted from previously asked similar questions in the forum. More recent work [58] studied the
way of identifying unclear questions in CQA websites. However, all of the work focuses on predict-
ing the poor quality questions and how to increase the accuracy of the predictions, more in-depth
research of dealing with the low-quality questions is still lacking. To the best of our knowledge,
this is the first work that investigates the possibility of automatically improving low-quality ques-
tions in Stack Overflow. Previous studies [11, 57, 58] have shown that one of the major reasons
for the introduction of low-quality questions is that developers do not create informative question
titles. Considering information seekers may lack the knowledge and terminology related to their
questions and/or their writing may be poor, formulating a clear question title and questioning on
the key problems could be a non-trivial task for some developers. Lacking important terminology
and pool expression may happen even more often when the developer is less experienced or less
proficient in English.

Among the Stack Overflow quality assurance guidelines, one of which is that developers should
attach code snippets to questions for the sake of clarity and completeness of information, which
lead to an impressive number of code snippets together with relevant natural language descriptions
accumulated in Stack Overflow over the years. Some prior work has investigated retrieving or
generating code snippets based on natural language queries, as well as annotating code snippets
using natural language (e.g., [2, 13, 15, 20, 21, 27, 30, 32, 35, 38, 41, 43, 48, 61, 68, 74]). However, to

1https://www.quora.com/.
2https://answers.yahoo.com/.
3https://stackoverflow.com/.
4https://stackoverflow.com/help/how-to-ask.
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Fig. 1. Example Code Snippet & Question Pairs.

the best of our knowledge, there have been no studies dedicated to the question generation5 task
in Stack Overflow, especially generating questions based on a code snippet.

Figure 1 shows some example code snippets and corresponding question titles in Stack Overflow.
Generating such a question title is often a challenging task since the corpus not only includes
natural language text, but also complex code text. Moreover, some rare tokens occur among the
code snippet, such as “setUpClass” and “Paramiko” illustrated in the aforementioned examples.

We propose an approach to help developers write high-quality questions based on their code
snippets by automatically generating question titles from given code snippets. We frame this ques-
tion generation task in Stack Overflow as a sequence-to-sequence learning problem, which directly
maps a code snippet to a question. To solve this novel task, we propose an end-to-end sequence-to-
sequence system, enhanced with an attention mechanism [5] to perform better content selection,
a copy mechanism [23] to handle the rare-words problem, as well as a coverage mechanism [59] to
avoid meaningless repetition. Our system consists of two components: a source-code encoder and
a question decoder. Particularly, the code snippet is transformed by a source-code encoder into a
vector representation. When it comes to the decoding process, the question decoder reads the code
embeddings to generate the target question titles. Moreover, our approach is fully data-driven and
does not rely on hand-crafted rules.

To demonstrate the effectiveness of our model, we evaluated it using automatic metrics such as
BLEU [49] and ROUGE [40] score, together with a human evaluation for naturalness and relevance
of the output. We also performed a practical manual evaluation to measure the effectiveness of our
approach for improving the low-quality questions in Stack Overflow. From the automatic evalu-
ation, we found that our approach significantly outperforms a collection of state-of-the-art base-
lines, including the approach based on information retrieval [52], a statistical machine translation
approach [36], and an existing sequence-to-sequence architecture approach in commit message
generation [33]. For human evaluation, questions generated by our system are also rated as more
natural and relevant to the code snippet compared with the baselines. The practical manual eval-
uation shows that our approach can improve the low-quality question titles in terms of Clearness,
Fitness and Willingness.

5“question generation” in this paper is to generate the question titles for a Stack Overflow post.
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In summary, this paper makes the following three main contributions:

• We propose a novel question generation task based on a sequence-to-sequence learning
approach, which can help developers to phrase high-quality question titles from given code
snippets. Enhanced with the attention mechanism, our model can perform the better content
selection, with the help of and copy mechanism and coverage mechanism, our model can
manage rare word in the input corpus and avoid the meaningless repetitions. To the best
of our knowledge, this is the first work which investigates the possibility of improving the
low-quality questions in Stack Overflow.

• We performed comprehensive evaluations on Stack Overflow datasets to demonstrate the
effectiveness and superiority of our approach. Our system outperforms strong baselines by
a large margin and achieves state of the art performance.

• We collected more than 1M 〈code snippet, question〉 pairs from Stack Overflow, which covers
a variety of programming languages (e.g., Python, Java, Javascript, C# and SQL). We have
released our code6 and datasets [17] to facilitate other researchers to repeat our work and
verify their ideas. We also implemented a web service tool, named Code2Que to facilitate
developers and inspire the follow-up work.

The rest of the paper is organized as follows. Section 2 presents key related work on question
generation and relevant techniques. Section 3 presents the motivation of this study. Section 4
presents the details of our approach for the question generation task in Stack Overflow. Section 5
presents the experimental setup, the baseline methods and the evaluation metrics used in our study.
Section 6 presents the detailed research questions and the evaluation results under each research
question. Section 7 presents the contribution of the paper and discusses the strength and weakness
of this study. Section 8 presents threats to validity of our approach. Section 9 concludes the paper
with possible future work.

2 RELATED WORK

Due to the great value of Stack Overflow in helping software developers, there is a growing body
of research conducted on Stack Overflow and its data. This section discusses various work in the
literature closely related to our work, i.e., deep source code summarization, the empirical study of
Stack Overflow on quality assurance, and different tasks by mining the Stack Overflow dataset. It
is by no means a complete list of all relevant papers.

2.1 Deep Source Code Summarization

A number of previous works have proposed methods for mining the 〈natural language, code
snippet〉 pairs, these techniques can be applied to tasks such as code summarization as well as
commit message generation. (e.g., [32], [30], [33], [62]).

One similar work with ours is Iyer et al. [32]. They proposed Code-NN, which uses an attentional
sequence-to-sequence algorithm to summarize code snippets. This work is similar to our approach
because our approach also uses an sequence-to-sequence model. However, there are three key
differences between our approach and Code-NN. First, the goal of of Code-NN is summarizing
source code snippets while the goal of our approach is generating questions from code snippets.
Second, the Code-NN only incorporates attention mechanism while our approach also employs
copy mechanism and coverage mechanism, which is more suitable for the specific task of question
generation. Third, Code-NN needs to parse the code into AST, while most code snippets in SO are
not parsable (e.g., the example code in Figure 8). Followed by Iyer’s work, Hu et al. [30] proposed

6https://github.com/beyondacm/Code2Que.
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to use the neural machine translation model on the code summarization with the assistance of the
structural information (i.e., the AST). And Wan et al. [62] applied deep reinforcement learning (i.e.,
tree structure recurrent neural network) to improve the performance of code summarization. Their
approach also use AST as the input. All of the aforementioned studies rely on the AST structure
of the source code, and note that most of the code in Stack Overflow are not parsable. Thus, the
AST-based approaches can not apply to our work.

2.2 Question Quality Study on Stack Overflow

The general consensus is that the quality of user-generated content is a key factor to attract users
to visit knowledge-sharing websites. Many studies have investigated the content quality in Stack
Overflow (e.g., [3, 4, 11, 12, 14, 37, 42, 46, 50, 58, 72, 73, 75]).

For example, Nasehi et al. [46] manually performed a qualitative assessment to investigate the
important features of precise code examples in answers of 163 SO posts. Yao et at. [73] investi-
gated quality prediction of both Q&As on SO. The output revealed that answer quality is strongly
positively associated with that of its question. Yang et al. [72] found that the number of edits on a
question is a very good indicator of question quality. Ponzanelli [50] developed an approach to do
automatic categorization of questions based on their quality. Correa et al. [11] studied the closed
questions in Stack Overflow, finding that the occurrence of code fragments is significant.

All of the above mentioned studies are either predicting quality of the post or increasing the
accuracy of predictions. Different from the existing research, our approach is related to improve
the quality of the questions. To the best of our knowledge, this is the first work which investigates
the possibility of improving the low quality questions using code snippets in Stack Overflow.

2.3 Machine/Deep Learning on Software Engineering

Recently, an interesting direction of software engineering is to use machine/deep learning for
different tasks to improve software development. Such as code search (e.g., [2, 24, 31, 39]), clone
detection (e.g., [7, 18, 19, 64, 67]), program repair (e.g., [10, 45, 60, 66]), document (such as API and
questions/answers/tags) recommendation (e.g., [22, 25, 26, 55, 63, 65, 69, 70, 76]).

For code search tasks, Gu et al. [24] proposed a deep code search model which uses two deep
neural networks to encode source code and natural language description into a vector represen-
tation and then uses a cosine similarity function to calculate their similarity. Allamanis et al. [2]
proposed a system that uses Stackoverflow data and web search logs to create models for retrieving
C# code snippets given natural language questions and vice versa. For clone detection tasks, white
et al. [67] first proposed a deep learning-based clone detection method to identify code clones via
extracting features from program tokens. For program repair tasks, White et al. [66] propose an au-
tomatic program repair approach, DeepRepair, which leverages a deep learning model to identify
the similarity between code snippets. For document recommendation tasks, Xia et al. [69] devel-
oped a tool, called TagCombine, an automatic tag recommendation method which analyzes objects
in software information sites. Gkotsis et al. [22] developed a novel approach to search and suggest
the best answers through utilizing textual features. Gangul et al. [16] examined the retrieval of a
set of documents, which are closely associated with a newly posted question. Chen et al. [9] stud-
ied cross-lingual question retrieval to assist non-native speakers more easily to retrieve relevant
questions.

Although the aforementioned studies have utilized machine/deep learning for different software
development activities, to our best knowledge, no one has yet considered the question generation
task in Stack Overflow. In contrast to all previous work, we propose a novel approach to generate
a question by a given code snippet. Our work is first to tackle such a task for helping developers
to generate a question when presenting a given code snippet.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 26. Pub. date: September 2020.
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3 MOTIVATION

In this section, we first summarise the problem and our solution in this study. Following that,
we present some example user scenarios of employing our approach in the software development
process. We then show some motivating examples from Stack Overflow of the sorts of problems
our work addresses.

3.1 The Problem and Our Solution

Despite the detailed guidelines provided by the community, a very large number of questions
in Stack Overflow are of low-quality [4, 12]. These poorly asked questions are often ambiguous,
vague, and/or incomplete, and hardly attract potential experts to provide answers, thus hindering
the progress of knowledge generation and sharing. In order to improve question quality, we need
to improve title, body and tags. In this work, we focus on improving titles. The motivation for
our work is that improving low-quality question titles can potentially be helpful in increasing the
likelihood of getting help for the information seekers, as well as reducing the manual effort for
quality maintenance of the CQA community. We propose a novel approach to assist developers
in posting high-quality questions by generating question titles for a given code snippet. Our ap-
proach provides benefit for the following tasks: (i) Question Improvement: many developers can not
post clear and/or informative questions due to their lack of knowledge and terminology related
to the problem, and/or their poor english writing skills. Our approach can generate high-quality
question titles for helping developers to summarize the key problems behind their presented code
snippet. (ii) Edits Assistance: the SO community has employed a collaborative editing mechanism
to maintain a satisfactory quality level for the post. However, the editing process may require sev-
eral interactions between the asker and other community members, thus delaying the answering
and even causing questions to sink in the list of open issues. Our approach can be used as an
automatic edit assistance tool to improve the question formulation process and reduce the man-
ual effort for quality maintenance. (iii) Code Embeddings: Another byproduct of our approach is
the code embeddings generated by our approach. In this study, we have collected more than 1M
code snippets which covers various programming languages such as Java, Python, Javascript, C#,
etc. All the code snippets are embedded into a high-dimensional vector space by our approach.
A variety of applications such as code search (e.g., [24, 31, 39]) , summarization (e.g., [30, 32, 33,
62]), retrieval (e.g., [1, 9, 71]), and API recommendation (e.g., [25, 26]) can benefit from the code
embeddings used in our study.

3.2 Illustrative User Scenarios

We implement our model as a standalone web application tool, called Code2Que. Developers can
copy and paste their code snippet to our tool to generate a question title for the code snippet.
Meanwhile, by utilizing the vector representation of the code snippets, Code2Que also retrieves a
list of top related questions in Stack Overflow and recommends them to the developers. The usage
scenarios of our proposed tool are as follows:

Without Tool. Consider Bob who is a developer, who is learning a new development frame-
work. He is also a non-native English speaker with poor English writing skills. Daily, Bob encoun-
ters various programming problems during development. He locates the code that is the root cause
of the problem, but he cannot figure it out. Due to his lack of the knowledge and terminology of
the development framework being used, he does not even know how to most effectively search for
answers to the problem on the Internet. Therefore, he creates a question in Stack Overflow, pro-
vides his code snippet in the question body according to the Stack Overflow guidelines, and then
tries his best to write a question title to summarize the problem. Unfortunately, his question title

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 26. Pub. date: September 2020.
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turns out to be very unclear and uninformative, and there are few users attracted by his question.
Bob waits for a long time but does not get any help.

With Tool. Now consider that Bob adopts tool Code2Que. Before he searches on the Internet,
Bob copies his code snippet to our Code2Que tool to generate a question title for the code snippet.
Bob uses the generated question as a query to search on the internet. The searching results are
now closely related to the development framework, even though he is not very familiar with it.
Bob can also quickly review a list of related questions in Stack Overflow which have a similar
problem code snippet. After going through these results, Bob can gain a better understanding of
the problem that he is trying to solve and quickly fix the problem by himself. Moreover, Bob can
also go back to his earlier poorly asked questions, Bob can use our tool as an edit assistance tool
on question titles for reformulating these low-quality questions. Bob provides the code snippet in
the question body and writes a question title based on the question title generated by our tool and
the knowledge he learned from the results. This time, his question title is much more clear and
informative and Bob’s question soon attracts an expert of the development framework. With the
help of this expert, Bob successfully figures his problem out.

3.3 Motivating Examples

A large number of questions have been closed by community members because their question
titles are unclear and need further clarifying. For example, the screenshots in Figure 2 and Figure 3
show two examples of problematic Stack Overflow question titles. Developers posted a question
“Fibonacci sequence in Python3.2” and “I am creating a notepad in java ... to paste it at location of
cursor” in Stack Overflow. They attached their code snippet and tried to explain the key meaning
of their problems. However, such question titles are still very uninformative (in Figure 2) and
confusing (in Figure 3). Both of these questions have been marked as having lack of clarity and
need to be further improved upon. Such titles run a real risk of not being found by the ideal people
to answer them, may make potential question answering users lose interest, or make users who
may answer them have to painstakingly browse the additional paragraph to understand the key
point. All reduce the likelihood of them giving help.

Using the tool Code2Que described in this paper, we can provide a way to automate the process
of improving such poor quality question titles, which is potentially helpful in reducing the manual
effort for the quality maintenance of CQA forums. Based on the developer’s code snippet, the
generated question title by our tool is “how to find the fibonacci series through recursion?” for the
code snippet shown in Figure 2 and “how to change the string value in textarea field using java?” for
the code snippet shown in Figure 3. These newly generated question titles are much more clear
and informative to readers, and also questioning on the key problems of the user’s concern. This
is helpful for the potential helpers to understand the key problems of the question better and also
for the askers to formulate a related question better.

4 APPROACH

In this section, we firstly define the task of question generation, then present the details of Stack
Overflow question generation system. Figure 4 demonstrates the workflow used by our model,
and Figure 5 demonstrates the details of the three incorporated mechanisms. A Long Short Term
Memory (LSTM) encoder-decoder architecture, is enhanced by attention mechanism [5], copy
mechanism [23] and coverage mechanism [59]. In general, our model consists of two compo-
nents: A Source-code Encoder and A Question Decoder. The source code snippet is trans-
formed by Source-code Encoder into a vector representation, which is then read by a Question
Decoder to generate the target question titles. Our model is a differentiable Seq2Seq model with

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 26. Pub. date: September 2020.
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Fig. 2. Example of Problem Questions Title (for Python).

aforementioned three mechanism, i.e., attention mechanism, copy mechanism and coverage mech-
anism, which can be trained in an end-to-end fashion with gradient descent.

4.1 Question Generation Task Definition

The motivation for our work is to improve the low-quality questions in Stack Overflow. Consider-
ing many developers may not be able to describe the problems due to their lack of knowledge and
terminology, and/or they are not native english speakers, we propose a novel task in this paper -
automatic generation of question titles from a code snippet, the central theme of which is helping
developers to create better question titles based on their targets and code snippets. We formulate
this task as a sequence-to-sequence learning problem.

Given C is the sequence of tokens within a code snippet, our target is to generate a Question Q,
which is relevant, natural, syntactically and semantically correct. To be more specific, our main
objective is to learn the underlying conditional probability distribution Pθ (Q|C) parameterized
by θ . In other words, the goal is to train a model θ using 〈code snippet, question〉 pairs such that
the probability Pθ (Q|C) is maximized over the given training dataset. More formally given a code
snippet C as a sequence of tokens (x1,x2, . . . ,xM ) of length M , and a question title Q as a sequence
of natural language words (y1,y2, . . . ,yN ) of length N . Mathematically, our task is defined as

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 26. Pub. date: September 2020.
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Fig. 3. Example of Problem Questions Title (for Java).

Fig. 4. Workflow of Our Model.

Fig. 5. Attention & Copy & Coverage Mechanism.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 26. Pub. date: September 2020.
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finding y, such that:

y = arдmaxQPθ (Q|C) (1)

where Pθ (Q|C) is defined as:

Pθ (Q|C) =
L∏

i=1

Pθ (yi |y1, . . . ,yi−1;x1, . . . ,xM ) (2)

Pθ (Q|C) can be seen as the conditional log-likelihood of the predicted question title Q given the
input code snippet C.

4.2 Source-code Encoder

Source code token in the code snippet is fed sequentially into the encoder, which generates a
sequence of hidden states. Our encoder is a two-layer bidirectional LSTM network,

−−→
fwt =

−−−−−→
LSTM2 (xt ,

−−−→
ht−1)

←−−
bwt =

←−−−−−
LSTM2 (xt ,

←−−−
ht−1)

where xt is the given input source code token at time step step t , and
−→
ht and

←−
ht are the hidden

states at time step t for the forward pass and backward pass respectively. The hidden states(from
the forward and backward pass) of the last layer of the source-code encoder are concatenated to

form a state s as s = [
−−→
fwt ;
←−−
bwt ].

4.3 Question Decoder

Our question decoder is a singe-layer LSTM network, initialized with the state s as s = [
−−→
fwt ;
←−−
bwt ].

Let qwordt be the target word at time stamp t of the ground truth question title. During training,
at each time step t the decoder takes as input the embedding vector yt−1 of the previous word
qwordt−1 and the previous state st−1, and concatenates them to produce the input of the LSTM
network. The output of the LSTM network is regarded as the decoder hidden state st , as follows:

st = LSTM1 (yt−1, st−1) (3)

The decoder produces one symbol at a time and stops when the END symbol is emitted. The only
change with the decoder at testing time is that it uses output from the previous word emitted by
the decoder in place of wordt−1 (since there is no access to a ground truth then).

4.4 Incorporating Attention Mechanism

We model the attention [5] distribution over words in the source code snippets. We calculate the
attention (at

i ) over the ith code snippet token as:

et
i = v

t tanh (Wehhi +Wshst + batt ) (4)

at
i = softmax

(
et

i

)
(5)

Here, vt , Wsh and batt are model parameters to be learned, and hi is the concatenation of for-
ward and backward hidden states of source-code encoder. We use this attention at

i to generate the
context vector c∗t as the weighted sum of encoder hidden states:

c∗t =
∑

i=1, .., |x |
at

i hi (6)
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We further use the c∗t vector to obtain a probability distribution over the words in the vocabulary
as follows,

P = softmax
(
Wv [st , c

∗
t ] + bv

)
(7)

where Wv and bv are model parameters. Thus during decoding, the probability of a word is
P (qword ). During the training process for each word at each timestamp, the loss associated with
the generated question title is:

Loss = − 1

T

T∑

t=0

loдP (qwordt ) (8)

The attention mechanism allows the model to focus on the most relevant parts of the input se-
quence as needed. For example in Figure 4, at time step 2, the context vector c∗t amplifies related
hidden states hk with high scores, and drowning out unrelated hidden states with low scores. For
such a case, it enables the question decoder to focus on the word “del” when it generates the word
“remove”. This ability to amplify the signal from the relevant part of the input sequence makes
attention models produce better results than models without attention.

4.5 Incorporating Copy Mechanism

A copy mechanism [23] is used to facilitate copying some tokens from the source code snippet to
the target generated question title. As illustrated in Figure 1, some words such as “setUpClass” are
naturally going to be much less frequent than other words. Thus it is highly unlikely for a decoder
that is solely based on a language model to generate such a word with very rare occurrences in
a corpus. In such cases, the possibly rare words in the input sequence might be required to be
copied from our source code snippet to the target generated question title. We incorporate a copy
mechanism to handle such rare word problem for Stack Overflow question generation.

In order to learn to copy (from source) as well as to generate words from the vocabulary (using
the decoder), we calculate pcд ∈ [0, 1]. This is the decision of a binary classifier that determines
whether to generate a word from the vocabulary or to copy the word directly from the input code
snippet, based on attention distribution at

i :

pcд = siдmoid
(
W T

ehc
∗
t +W

T
shst +Wxxt + bcд

)
(9)

Here Weh , Wsh , Wx and bcд are trainable model parameters. The final probability of decoding a
word is specified by the mixture model:

p∗ (qword ) = pcд

∑

i :wi=qword

at
i + (1 − pcд )p (qword ) (10)

where p ∗ (qword ) is the final distribution over the union of the vocabulary and the input se-
quence. As discussed earlier, Equation (10) addresses the rare words issue, since a word not in our
vocabulary will have probabilityp (qword ) = 0. Therefore, in such cases, our model will replace the
< unk > token for out-of-vocabulary words with a word in the input sequence having the highest
attention obtained using attention distribution at

i . The copy mechanism allows the model to locate
a certain segment of the input sequence and puts that segment into the output sequence. pcд is
a soft switch to choose between generating a word from vocabulary or copying a word from the
input sequence. For example, in Figure 1, the rare word “setUpClass” in the question title is copied
from the input source code snippet. For such a rare word, copy mechanism increases the copy-
mode probability and decreases the generate-mode probability, which can correctly catch the rare
word and put it to the output sequence.
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4.6 Incorporating a Coverage Mechanism

Repetition is a common problem for sequence-to-sequence models and to discourage meaningless
repetitions, we maintain a word coverage vector cov , which is the sum of attention distributions
over all previous decoder timesteps:

covt =

t−1∑

t ′=0

at ′ (11)

Intuitively, covt is a distribution over source code snippet tokens that represents the degree of
coverage that those tokens have received from the attention mechanism so far. Note that no word
is generated before timestamp 0, and hence cov0 will be a zero vector then. The update Equation (4)
is now modified to be:

et
i = v

t tanh
(
Wcvcov

t
i +Wehhi +Wshst + batt

)
(12)

Here,Wcv are trainable parameters that ensure the attention mechanism’s current decision is in-
formed by a reminder of its previous decisions. The coverage mechanism allows our model to solve
the word repetition problem in the output sequence (see Figure 12). The coverage mechanism en-
sures that the attention mechanism’s current decision is informed by a reminder of its previous
decisions (summarized in covt ). This should make it easier for the attention mechanism to avoid
repeatedly attending to the same locations, and thus avoid generating repetitive text.

Following the incorporation of the copy and coverage mechanism in our attentional sequence-
to-sequence architecture, the final loss function will be:

Loss =
1

T

T∑

t=0

loдP∗ (qwordt ) + λLcov (13)

where λ is a reweighted hyperparameter and the coverage loss Lcov is defined as:

Lcov =
∑

i

min
(
at

i , cov
t
i

)
(14)

Once the model is trained, we do inference using a beam search. The beam search is parametrized
by the possible paths number k . The inference process stops when the model generates the END
token which stands for the end of the sentence.

5 EXPERIMENTAL SETUP

In this section, we firstly describe the evaluation corpus of the task. We then introduce the imple-
mentation details of our neural generation approach, the baselines to compare, and their experi-
mental settings. Lastly, we explain the evaluation metrics.

5.1 Pre-processing

We experiment with our neural question generation model on the latest dump of the Stack Over-
flow (SO) dataset, which is publicly available.7 Each post comprises a short question title, a detailed
question body, and one or more associated answers and multiple tags.

In this study, we performed our experiment on a variety of programming languages, which in-
clude Python, Java, Javascript, C# and SQL. To do that, we used the Python, Java, Javascript, C#
and SQL tag for collecting questions associated with the corresponding programming language
respectively. Then we removed all questions whose question scores were less than 1. This is rea-
sonable since our goal is to generate high-quality questions to help developers. We extracted code

7https://archive.org/details/stackexchange.
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Table 1. Dataset Statistics

Languages #Code Tokens #Question Tokens Avg.Code Length Avg.Question Length

Python 2,367,148 109,329 84.7 11.2
Java 3,371,946 123,994 103.2 10.8
Javascript 2,814,729 121,854 94.1 10.8
C# 2,340,202 100,178 82.1 11.0
SQL 1,483,056 48,668 84.1 10.1

Fig. 6. Volinplots of Code Distribution.

snippets (using 〈code〉 tags) within the post’s question body and corresponding post question title.
We added the resulting 〈question, code snippet〉 pairs to our corpus.

5.1.1 Data Preprocessing. We tokenized the code snippet with respect to each programming
language for pre-processing respectively. We adopted the NLTK toolkit [6] to separate tokens and
symbols. One of the challenging tasks during the tokenization was the structural complexity of
the code snippet in our dataset. We stripped out all comments by using the regular expression for
different programming languages. After that, in order to avoid being context-specific, numbers
and strings within a code snippet and replaced them with special tokens “VAR”, “NUMBER” and
“STRING” respectively. Table 1, Figure 6 and Figure 7 shows some data statistics on the processed
dataset. We can see that the length of Java and Javascript code snippets are much longer than the
other programming languages. On average, Java and Javascript code snippets contain 103 and 94
tokens respectively, while the code snippets of the other three programming languages are just
around 84 tokens long. On the other hand, the question titles of all the programming languages
are approximately at the same level, the overall average of the question titles are 11 tokens long.

5.1.2 Data Filtering. Users can post different types of questions in SO, such as “how to X” and
“What/Why is Y”. In our preliminary study, we targeted questions which include interrogative
keywords such as “how”, “what”, “why”, “which”, “when”. For the above collection of question-
code pairs, only the pairs where the aforementioned keywords appear in the question title were
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Fig. 7. Volinplots of Question Distribution.

Table 2. Number of Training/Validation/Testing Samples

Python
# pairs (Train) 186,976 # pairs (Test-Raw) 3,000
# pairs (Val) 3,000 # pairs (Test-Clean) 2,940

Java
# pairs (Train) 250,708 # pairs (Test-Raw) 3,000
# pairs (Val) 3,000 # pairs (Test-Clean) 2,963

Javascript
# pairs (Train) 290,610 # pairs (Test-Raw) 3,000
# pairs (Val) 3,000 # pairs (Test-Clean) 2,940

C#
# pairs (Train) 178,830 # pairs (Test-Raw) 3,000
# pairs (Val) 3,000 # pairs (Test-Clean) 2,974

SQL
# pairs (Train) 150,002 # pairs (Test-Raw) 3,000
# pairs (Val) 3,000 # pairs (Test-Clean) 2,980

kept. After that, we removed pairs where the code snippets are too long or too short. Based on the
interquartile range (IQR) of the violin plots in Figure 6 and Figure 7, we only preserved pairs where
the token range from 16 tokens to 128 tokens for code snippet and the token range from 4 tokens to
16 tokens for question titles. At this stage, we collected more than 1M 〈question, code snippet〉 pairs
in total for Python, Java, Javascript, C# and SQL programming languages. We randomly sampled
3,000 pairs for validation and 3,000 pairs for testing respectively, and kept the rest for training.
The details of the training, validation and testing samples for each programming language are
summarized in Table 2.

5.1.3 Clone Detection. Considering that there may be duplicate and/or very similar 〈code snip-
pet, question〉 pairs between the training set and testing set, this may mislead the evaluation results.
We further conducted a primitive clone detection analysis to remove the noisy examples from our
testing data set. A lot of methods have been proposed for clone detection in recent years (e.g.,
[7, 18, 19, 64, 67]). We followed the approach proposed by [18] for clone detection. For each code
snippet, we compose a numerical vector by summing up the word embedding vectors for all the
relevant tokens within the code snippet. Then the similarity between two code snippetsC1 andC2
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Table 3. Clone Detection Analysis

Similarity Python Java Javascript C# SQL

si ∈ [0.0, 0.2) 2,153 2,241 1,939 2,328 2,359
si ∈ [0.2, 0.4) 512 473 651 422 413
si ∈ [0.4, 0.6) 195 187 272 182 159
si ∈ [0.6, 0.8) 80 62 78 42 49
si ∈ [0.8, 1.0] 60 37 60 26 20

can be calculated as follows:

Distance (C1,C2) = Euclidean(e1, e2) (15)

Similarity (C1,C2) = 1 − Distance (C1,C2) (16)

where e1 and e2 are the corresponding code embedding vectors ofC1 andC2. Each code snippetCi in
the testing set is queried against all the code snippets in the training set, the maximum similarity
score si associated with the Ci is retrieved. The results of si with respect to each programming
language are summarized in Table 3. If the similarity score si is over a threshold δ (δ is set to 0.8 in
this study), then the code snippetCi is viewed as a code clone and will be deleted from our testing
set. From the table we can see that the number of clone code snippets is very small, while most
code snippets get relatively low similarity scores. After removing all the examples with similarity
scores above 0.8 from the testing set, we reconstructed a clean testing set for each programming
language, the final results are summarized in Table 2. The clean testing set is used for the final
evaluation of this study.

5.2 Implementation Details

We implemented our system in Python using Tensorflow framework. We added special START and
END tokens for each sequence in our training set. The vocabulary size for the Java and Python
dataset were set to 50,000 and 80,000 respectively. We use a two-layer bidirectional LSTM for the
encoder and a single-layer LSTM for the decoder. We set the number of LSTM hidden states to 256
in both encoder and decoder. We choose the word embeddings of 300 dimensions. Optimization is
performed using stochastic gradient descent (SGD) with a learning rate of 0.01. We fix the batch
size for updating to be 32. During decoding, we perform beam search with beam size of 10. We train
the model for 30 epochs. Our hyper-parameters were tuned on the validation set, the evaluation
results were reported on the test set. We discuss the details of the parameter tuning in Section 6.

5.3 Baselines

To demonstrate the effectiveness of our proposed approach, we compared it with several compet-
itive baseline approaches. We adapted these approaches slightly for our problems, i.e., generating
question titles from a given code snippet. We briefly introduced these approaches and the ex-
perimental settings as below. For each method mentioned below, the involved parameters were
carefully tuned, and the parameters with the best performance were used to report the final com-
parison results.

(1) IR stands for the information retrieval baseline. For a given code snippet ci , it retrieves
the question titles associated with the code c j that is closest to the input code ci from
the training set. We use TF-IDF [52] metric to calculate the distance between two code
snippets, and build a nearest neighbor model to retrieve the most similar instance from
the traning set.
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(2) MOSES [36] is a widely used phrase-based statistical machine translation system. Here,
we treat a tokenzied code snippet as the source language text, and the corresponding
question title as the target language text. We run the translation from code snippets to
question titles. We train a 3-gram language model on target side texts using KenLM [28],
and perform turning with MERT on dev set.

(3) NMT Jiang et al. [33] proposed an sequence-to-sequence approach to generate commit
message from code, we refer to it as NMT in our study. We choose NMT as one comparing
approach since its promising performance in commit generation. NMT model take source
code as inputs and associated question title as outputs. Hyperparameters are tuned with
validation set.

(4) CODE-NN Iyer et al. [32] proposed an attention-based Long Short Term Memory (LSTM)
neural network, named CODE-NN, to generate descriptive summaries for C# code snip-
pets and SQL queries. In order to use CODE-NN, the C# code fragments and SQL state-
ments first need to be parsed by the modified version of parser. Considering code snippets
in SO are usually incomplete and not parsable, and it is non-trivial to design specific parser
to parse code snippets of various programming languages, we tried our best to apply our
approach to the CODE-NN dataset, which include 60k+ C# (title, query) pairs and 30k+
SQL (title, query) pairs respectively.

5.4 Evaluation Metrics

We evaluate our task with automatic evaluation, and also perform human evaluation via a user
study.

(1) Automatic Evaluation. To evaluate different models, We adopt BLEU-1, BLEU-2, BLEU-
3, BLEU-4 [49], ROUGE-1, ROUGE-2 and ROUGE-L [40] scores. BLEU is a precision-
oriented measure commonly used in translation tasks, which measures the average n-
gram precision on a set of reference sentences, with a penalty for overly short sentences.
BLEU-n is the BLEU score that uses up to n-grams for counting co-occurrences. ROUGE is
a recall-oriented measure widely used in summarization tasks, which used to evaluate
n-grams recall of the summaries with gold-standard sentences as references. ROUGE-
1 and ROUGE-2 measures the uigram and bigrams between the system and reference
summaries. ROUGE-L is a longest common subsequence measure metric, it does not re-
quire consecutive matches but in-sequence matches that reflect sentence level word or-
der. We conducted a large scale automatic evaluation over various kinds of programming
languages, i.e., Python, Java, Javascript, C# and SQL. In our work, we regard the gener-
ated question titles as candidates, and the original human written question titles as gold-
standard references.

(2) Human Evaluation. Since automatic evaluation of generated text does not always agree
with the actual human-perceived quality and usefulness of the results, we also perform
human evaluation studies to measure how humans perceive the generated questions. To
do this, we consider two modalities in our user study: Naturalness and Relevance. Natu-
ralness measures the grammatical correctness and fluency of the question title generated.
Relevance measures how relevant the question title is to the code snippet, and indicates
the factual divergence of the code snippet to the reference question titles. We randomly
sampled 50 〈code snippet, question〉 pairs from Python and Java test results respectively,
for each code snippet, we provided 5 associated question titles: one was generated by hu-
man (the ground truth question title), while the others were generated by baseline methods
and our approach. Then we invited 5 evaluators, including 4 Ph.D students and 1 Masters
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student, all of whom are not co-authors, majoring in Computer Science and have indus-
trial experience with Python as well as Java programming (ranging from 1–3 years). All
of the five evaluators have at least one year of studying/working-experience in English
speaking countries. Each participant was asked to manually rate generated question ti-
tles on a scale between 1 and 5 (5 for the best results) across the above modalities. The
volunteers were blinded as to which question title was generated by our approach.

(3) Practical Manual Evaluation. Following the human evaluation, we also performed a
practical manual evaluation to further analyze whether our approach can generate bet-
ter question titles for low-quality questions in Stack Overflow. To do this, we randomly
sampled 50 low-quality 〈code snippet, question〉 pairs from our Python and Java datasets
before the data preprocessing. It is worth mentioning that different from human evalua-
tion, these sampled posts were not included in our training and/or testing set, because all
the questions with score less than 1 were removed before training processing. For each
code snippet, we applied our approach to generate a question title for manual annota-
tion. We conducted pairwise comparison between two question titles (one was generated
by humans, one was generated by our tool) for the same code snippet. For each pair-
wise comparison, we asked the same 5 evaluators to decide which one is better or non-
distinguishable in terms of the following three metrics: Clearness, Fitness, Willingness to
Respond. Clearness measures whether a question title is expressed in a clear way. Unclear
questions are ambiguous, vague, and/or incomplete. Fitness measures whether a question
title is reasonable in logic with the provided code snippet, and whether it is questioning
on the key information. Unfit question titles are either irrelevant to the code snippet or
universal questions. Willingness to Respond measures whether a user is willing to respond
to a specific question. This metric is used to justify how likely the generated questions can
elicit further interactions. If people are willing to respond, the interactions can go further.
Each metric is evaluated independently on each pairwise comparison. Also the two ques-
tion titles were randomly shuffled and the participants do not know which question is
generated by our approach.

6 RESULTS AND ANALYSIS

To gain a deeper understanding of the performance of our approach, we conduct analysis on our
evaluation results in this section. For quantitative analysis, firstly we study the experimental re-
sults of automatic evaluation, then we examine the outcome of human evaluation. Specifically, we
mainly focus on the following research questions:

• RQ-1: How effective is our approach under automatic evaluation?
• RQ-2: How effective is our approach compared with the CODE-NN model?
• RQ-3: How effective is our approach under human evaluation?
• RQ-4: How effective is our approach for improving low-quality questions?
• RQ-5: How effective is our use of attention mechanism, copy mechanism and coverage mech-

anism under automatic evaluation?
• RQ-6: How effective is our approach under different parameter settings?
• RQ-7: How efficient is our approach in practical usage?

6.1 RQ-1: How Effective is Our Approach Under Automatic Evaluation?

6.1.1 Automatic Evaluation Results. The automatic evaluation results of our proposed model
and aforementioned baselines are summarized in Table 4, 5, 6, 7, 8 for Python, Java, Javascript, C#,
and SQL respectively. The best performing system for each column is highlighted in boldface. As
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Table 4. Automatic Evaluation(Python dataset)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

IRTFIDF 20.2 ± 1.1% 17.7 ± 0.4% 18.4 ± 0.3% 18.0 ± 0.2% 24.4 ± 1.4% 6.9 ± 0.6% 21.8 ± 1.2%

Moses 20.4 ± 1.4% 18.1 ± 0.8% 17.8 ± 0.7% 17.4 ± 0.6% 26.9 ± 1.3% 6.2 ± 0.5% 20.4 ± 1.1%

NMT 28.9 ± 1.7% 21.9 ± 0.7% 21.3 ± 0.3% 20.3 ± 0.2% 34.1 ± 2.2% 10.6 ± 1.1% 31.2 ± 1.9%

Ours 35.8 ± 2.0% 30.1 ± 0.9% 26.8 ± 0.4% 24.2 ± 0.3% 39.9 ± 2.5% 12.6 ± 2.5% 36.7 ± 2.4%

Table 5. Automatic evaluation(Java dataset)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

IRTFIDF 18.1 ± 1.1% 17.2 ± 0.5% 18.0 ± 0.4% 17.6 ± 0.3% 22.2 ± 1.3% 6.2 ± 0.7% 19.9 ± 1.2%

Moses 18.5 ± 1.0% 17.3 ± 0.6% 17.1 ± 0.5% 16.7 ± 0.4% 25.2 ± 1.5% 5.3 ± 0.4% 20.6 ± 1.2%

NMT 25.0 ± 1.6% 20.7 ± 0.7% 20.9 ± 0.3% 20.2 ± 0.2% 30.0 ± 2.0% 9.6 ± 1.1% 27.3 ± 1.8%

Ours 31.8 ± 1.8% 27.5 ± 0.7% 25.2 ± 0.3% 23.3 ± 0.2% 35.4 ± 2.2% 10.0 ± 1.8% 32.6 ± 2.1%

Table 6. Automatic Evaluation(Javascript dataset)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

IRTFIDF 18.7 ± 1.1% 17.6 ± 0.4% 18.3 ± 0.3% 17.9 ± 0.2% 22.6 ± 1.3% 6.2 ± 0.6% 20.2 ± 1.1%

Moses 18.9 ± 1.2% 18.8 ± 0.7% 18.7 ± 0.7% 18.3 ± 0.6% 25.7 ± 1.2% 5.8 ± 0.4% 20.1 ± 1.0%

NMT 28.1 ± 1.6% 22.0 ± 0.6% 21.5 ± 0.3% 20.5 ± 0.2% 32.8 ± 1.9% 10.3 ± 1.0% 30.4 ± 1.7%

Ours 33.2 ± 1.9% 26.4 ± 0.8% 24.1 ± 0.4% 22.1 ± 0.3% 37.3 ± 2.2% 11.7 ± 1.8% 34.7 ± 2.1%

Table 7. Automatic Evaluation(C# dataset)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

IRTFIDF 18.0 ± 1.0% 17.1 ± 0.4% 17.9 ± 0.3% 17.6 ± 0.2% 21.9 ± 1.3% 6.3 ± 0.6% 19.9 ± 1.1%

Moses 18.5 ± 1.0% 16.8 ± 0.7% 16.6 ± 0.6% 16.3 ± 0.6% 25.4 ± 1.2% 6.0 ± 0.4% 20.0 ± 1.0%

NMT 24.4 ± 1.7% 19.3 ± 0.7% 19.8 ± 0.2% 19.3 ± 0.2% 29.4 ± 1.6% 9.7 ± 0.8% 27.1 ± 1.4%

Ours 30.9 ± 1.8% 27.7 ± 0.7% 25.3 ± 0.3% 23.4 ± 0.2% 34.8 ± 2.3% 10.2 ± 1.9% 31.8 ± 2.2%

Table 8. Automatic evaluation(SQL dataset)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

IRTFIDF 15.6 ± 1.0% 17.6 ± 0.4% 18.4 ± 0.3% 17.9 ± 0.3% 19.3 ± 1.2% 3.7 ± 0.6% 16.4 ± 1.0%

Moses 17.3 ± 0.9% 16.6 ± 0.7% 16.5 ± 0.6% 16.2 ± 0.6% 21.4 ± 1.1% 3.4 ± 0.3% 15.0 ± 0.8%

NMT 22.0 ± 1.3% 20.4 ± 0.5% 20.7 ± 0.4% 19.9 ± 0.2% 26.6 ± 1.7% 7.4 ± 1.0% 22.9 ± 1.5%

Ours 26.8 ± 1.6% 23.8 ± 0.6% 22.6 ± 0.3% 21.2 ± 0.2% 30.5 ± 2.0% 8.4 ± 1.3% 26.3 ± 1.9%

can be seen, our model outperforms all the other methods considerably in terms of BLEU
score and ROUGE score. BLEU score measures precision of the system. To be more specific, it
measures how many words (and/or n-grams) in the machine generated question titles appear in
the ground truth question titles. For ROUGE scores, it measures the recall of the system i.e. how
many words(and/or n-grams) in the ground-truth question titles appear in the machine generated
questions titles. From the table, we can observe the following points:
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(1) In general, encoder-decoder architecture baselines, i.e., NMT and our proposed methods,
outperform both the IR based approach and the statistical machine translation approach
(e.g., Moses) by a large margin. For IR based approach, it retrieves questions from existing
database according to similarity score, which relies heavily on whether similar code snip-
pets can be found and how similar the code snippets are. As a result, it is unable to consider
the context of the code snippet, which is reflecting that memorizing the training set is not
enough for this task. For the phrase-based statistical approaches which use separately en-
gineered subcomponents, the encoder-decoder model uses the vector representation for
words and internal states, semantic and structural information can be learned from these
vectors by taking global context into consideration.

(2) Regarding the BLEU score, our approach is significantly better than the other meth-
ods (e.g., traditional IR method, phrase-based statistical method, and NMT methods) and
achieves understandable results [54]. For example, it improves over NMT methods on
BLEU-4 by 19.2%8 on Python dataset and 15.3% on Java dataset. We attribute this to the
following reasons: firstly, our approach is based on a sequence-to-sequence architecture
and hence it is superior to the statistical baselines [36]. Secondly, compared with NMT
baseline which is solely based on the sequence-to-sequence approach, besides using the
encoder-decoder architecture, our approach also incorporates an attention mechanism to
perform better content selection, a copy mechanism to manage the rare-words problem
in source code snippet, as well as a coverage mechanism to eliminate meaningless repeti-
tions, which makes it superior to the NMT baselines. According to [54], the bleu-1 score
above 0.30 generally reflect understandable results and above 0.50 reflect good and fluent
translations, the bleu score of our approach can be considered as acceptable, but there is
still a large gap compared with ground truth question titles.

(3) Regarding the ROUGE score, the advantage of our proposed model is also clear. The po-
tential explanation is that baseline methods, such as Moses, NMT, even with a much larger
vocabulary, still has a large number of out of vocabulary words. Our model, augmented
with the copy mechanism to handle the rare-words problem, beats these baselines by a
large margin. This further justifies that the copy mechanism generally helps when dealing
with the question generation tasks. It also signals that out of vocabulary tokens within
code snippet convey much valuable information when generating question titles.

(4) The proposed approach performs best on the Python dataset and worst on the SQL dataset.
This is in part because, compared with Python code snippet, SQL code snippets only con-
tain a set of keywords and functions, and thus generating question titles for SQL code
snippet is more challenging for solely relying on the compositional structures in the
input.

6.1.2 Examples of the Automatic Evaluation. We examine several sample outputs by hand to
perform a further qualitative analysis. Figure 8 shows some examples of the question titles gener-
ated by human (Golden questions), the baselines (e.g., IR, Moses and NMT) and our approach for
the given code snippets in the test set. We have the following interesting observations:

(1) We see a large gap between our approach and other baselines. Our approach generates
syntactically and semantically correct and relevant question titles in most cases,
while the outputs of every other model are less meaningful and/or more irrelevant. This
is consistent with our previous automatic evaluation results. For the IR method, often
the question titles are unable to connect to the code snippet. For example in the third

8The improvement ratio is defined within https://www.d.umn.edu/∼gshute/arch/improvements.xhtml.
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Fig. 8. Examples of output generated by each model.

sample, the ground truth question is about “find difference between two values”, while
the IR methods retrieved the question of “how to calculate the diff between two dates in
django”. The statistical machine translation model, such as Moses, is unable to generate
a syntactically correct question title. For example, in the sixth and seventh sample, the
question titles generated by Moses are incomplete and meaningless. For the NMT method,
although it can generate the question titles in the right format in some cases, it still fails
to replicate the critical tokens (e.g., example1) because of the difficulty brought by the
unseen words in the code snippet.

(2) Our approach handles out of vocabulary words well, and it can generate accept-
able question titles for a code snippet with rare words. In contrast, the baseline methods
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often fail in such cases. For example, in the first sample, in which the focus should be put
on “setUpClass” method in the code snippet, Our model successfully captures this rare
phrase, while other baselines return non-relevant descriptions. It is quite interesting that
our model automatically learns to select informative tokens in the code snippet, which
shows the extractive ability of our model. At the same time, our approach often generates
words to “connect” those critical tokens, showing its aspect of abstractive ability.

(3) A large number of the question titles generated by our model produce meaning-
ful output for simple code snippets. Note that in some cases, the generated question
titles are not exactly inline with the standard ones, yet still make sense by looking at the
meaning of the code snippet. For example, in the second case, the ground truth question
title is “How to use win32gui module with Python”, our system generates a question title
about “how to install win32gui”. This is reasonable given the source code contains “Im-
portError” while “import win32gui”. In the third case, our approach generates a question
title of “how to find the absolute distance of two point in python”, this is because the code
snippet defines a function that returns the distance of two points. For such cases, it is rea-
sonable to generate different question titles that look at the code snippet from different
aspects. Our question titles can also be viewed as correct and meaningful by looking at
the meanings of the code snippet.

(4) Sometimes, our approach can generate question titles that are more clear and in-
formative than the ground truth question titles, such as samples 4–6. For example, in
the fourth sample, the ground truth question title is “why the various JPEG extensions?”
which is uninformative and unclear to the potential helpers, after using our tool the ques-
tion title can be rephrased as “how to safely get the file extensions from a file” which is
more attractive and informative than the original ones.

(5) However, outputs from our system are not always “correct”. For example, in the last
second sample, the ground truth question title is “How can I disable the web browser
message in python”, however, our system output an “opposite” question title of “How to I
open the web browser message when python2”. This example reveals that in some cases,
question titles can be generated incorrectly by only looking at the implementation details
of the code snippet. This is because we can not judge the developers’ intent just through
the code snippet attached to the question.

(6) Also, outputs from our system are not always “perfect”. The gap between ground
truth question titles and machine generated question titles is still large. For example, in
the last sample, The question quality of our model degrades on longer and compositional
inputs. This indicates that there is still a large room for our question generation system
to improve. It would be interesting to further investigate how to interpret why certain
irrelevant words are generated in the question title. For example, in the second and fifth
samples, there are some irrelevant words at the end of generated questions. We will ad-
dress such problems in the future.

Answer to RQ-1: How effective is our approach under automatic evaluation? - we con-
clude that our approach is effective under automatic evaluation and beats the baselines by a large
margin.

6.2 RQ-2: How Effective is our Approach Compared with the CODE-NN model?

CODE-NN trained a neural attention model generate summaries of C# and SQL code fragment,
they have published their C# and SQL datasets, which include 66,015 (title, query) pairs for C#
and 32,337 pairs for SQL. It is worth emphasizing that CODE-NN removed all the non-parsable
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Table 9. Automatic Evaluation(CODE-NN dataset)

Model BLEU-4 (C# Dataset) BLEU-4 (SQL Dataset)
IR 13.7 13.5
Moses 11.6 15.4
CODE-NN 20.5 18.4
Ours 22.1 20.4

Ours (Transfer) 21.3 18.4

code snippets and retained only the parsable code snippets. We retrained our approach on the
CODE-NN datasets, the automatic evaluation results of our approach and CODE-NN model are
summarized in Table 9. Because CODE-NN use the BLEU-4 metric for evaluation, we only report
the BLEU-4 score in our table. Apart from that, we also explored the effectiveness of transferring
our trained model to the new datasets. We further applied the C# and SQL model already obtained
to the CODE-NN datasets. This is reasonable because CODE-NN extracted the code snippet only
from the accepted answers containing exactly one code snippet, while our approach extracted
the code snippet from the questions, so training dataset of our approach will not contaminate
the CODE-NN datasets. In other words, our model does not see any test case in the CODE-NN
dataset during the training process. From the table, we can observe the following points:

(1) In general, our approach and CODE-NN outperforms the other baselines by a large margin.
The results are consistent with our previous evaluation. This further justifies the encoder-
decoder architecture approach is helpful to learn the semantic and structural information
from the code snippet.

(2) The neural models, i.e., CODE-NN and ours, have better performance on C# than SQL.
This is probably due to the following reasons: First, generating question titles for SQL
code snippets is a more challenging task since the SQL code snippet only has a handful
of keywords and functions, and the generation models need to rely on other structural
aspects. Second, the size of the SQL training data (32,337 pairs) is much smaller than the
size of the C# training data (66,015 pairs), it is more difficult to train a good neural model
if there is lack of sufficient training data.

(3) By using CODE-NN datasets, our model performs better than CODE-NN. It improves
BLEU-4 score by 7.8% on C# dataset and 10.8% on SQL dataset. We attribute this to the
copy mechanism and coverage mechanism incorporated into our approach, which is able
to handle the low frequency tokens and reduce the redundancy during the generation
process.

(4) By transferring existing trained models to the CODE-NN datasets, it is notable that even
without training directly on the CODE-NN datasets, we can still achieve comparable re-
sults compared with the CODE-NN model. We attribute this to the advantage of our model
as well as the larger datasets constructed with our approach. We have collected more
than 170K 〈code snippet, question〉 pairs for C# and more than 150K pairs for SQL. The
CODE-NN datasets only include 60k+ C# pairs and 30k+ SQL pairs. This verifies the im-
portance of using big training data for applying deep learning-based methods in software
engineering.

Answer to RQ-2: How effective is our approach compared with CODE-NN? - we conclude
that our approach is more effective compared with Code-NN.
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Fig. 9. User Study Case (Human Evaluation).

Table 10. Human Evaluation(Python dataset)

Model Naturalness LowN MediumN HighN Relevance LowR MediumR HighR

IR 3.91 13.2% 15.6% 71.2% 2.22 66.4% 19.2% 14.4%
Moses 2.44 62.4% 17.2% 20.4% 2.73 40.8% 30.8% 28.4%
NMT 3.38 22.0% 28.4% 49.6% 2.90 35.6% 32.4% 32.0%
Ours 3.75 18.4% 12.8% 68.8% 3.55 18.8% 22.8% 58.4%

6.3 RQ-3: How Effective is Our Approach Under Human Evaluation?

6.3.1 Human Evaluation Results. Figure 9 shows one example in our human evaluation study.
We obtain 250 groups of scores from human evaluation for Python and Java Dataset respectively.
Each group contains 4 pairs of scores, which were rated for candidates produced by IR, Moses,
Seq2Seq and our approach. Each pair contains a score for the Naturalness modality and a score for
Relevance modality. We regard a score of 1 and 2 as low-quality, a score of 3 as medium quality, and
a score of 4 and 5 as high-quality. Regarding human evaluation study results, the responses from all
evaluators is then averaged for each modality. We also count the proportion of each quality type
within each modality. The quality distribution and average score of Naturalness and Relevance
across each methods are presented in Table 10 and Table 11. From the table, several points stand
out:

(1) From Naturalness prospective, IR performs a slightly better than our approach. This
is reasonable since it retrieves other similar question titles which are all also written by
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Table 11. Human Evaluation(Java dataset)

Model Naturalness LowN MediumN HighN Relevance LowR MediumR HighR

IR 3.56 19.6% 22.8% 57.6% 2.29 68.4% 14.4% 17.2%
Moses 2.37 62.4% 18.4% 19.2% 2.24 65.2% 21.6% 13.2%
NMT 2.96 28.0% 45.2% 26.8% 2.66 47.2% 27.6% 25.2%
Ours 3.42 22.0% 27.2% 50.8% 3.25 28.8% 24.4% 26.8%

Fig. 10. User Study Case (Practical Manual Evaluation).

humans. However its output lacks the explanation to the actual input code snippet, which
also explains its surprisingly low score on Relevance.

(2) From Relevance prospective, the question titles generated by our approach are much
more appreciated by the volunteers. Its superior performance in terms of Relevance
further supports our claim that it manages to select content from input more effectively.

(3) In general, our model performs well across both dimensions. The results of human
evaluation are consistent with automatic evaluation results. The considerable proportion
of high-quality questions generated by our approach with respect to the Naturalness and
Relevance also reconfirms the effectiveness of our system.

Answer to RQ-3: How effective is our approach under human evaluation? In general, for
considering the combination of both modality, i.e., Naturalness and Relevance, our model beats the
baselines by a large margin.

6.4 RQ-4: How Effective is our Approach for Improving Low-quality Questions?

6.4.1 Practical Manual Evaluation Results. Figure 10 shows one example of our practical manual
evaluation study. We collected 50 pairs of question titles (one was generated by humans and one
was generated by our approach) for Python and Java respectively for comparison purposes. For
each pairwise comparison, we got 5 groups of selections from the evaluators. Each group contains
three user selections with respect to the Clearness, Fitness and Willingness measures respectively.
We calculated the proportion of the user selection according to each evaluation metric. Table 12
and Table 13 show the results of the practical manual evaluation for Python and Java respectively.
From the table we can see that:
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Table 12. Practical Manual Evaluation (Python dataset)

Ours vs. Human Win (%) Lose (%) Non-distinguishable (%)

Clearness 52.4 33.2 14.4
Fitness 55.2 24.0 20.8

Willingness 61.2 31.6 7.2

Table 13. Practical Manual Evaluation (Java dataset)

Ours vs. Human Win (%) Lose (%) Non-distinguishable (%)

Clearness 42.8 34.0 23.2
Fitness 47.2 39.6 13.2

Willingness 49.2 26.8 24.0

Fig. 11. Practical Manual Evaluation Example.

(1) The question titles generated by our approach outperform the poor quality question titles
in terms of all the metrics. This demonstrates that our approach produces more clear
and/or appropriate question titles, which is potentially helpful for improving the low-
quality questions in Stack Overflow.

(2) Particularly, our question titles have substantially better willingness scores, indicating that
developers are more willing to respond to our questions. This shows that question titles
generated by our model are more likely to elicit further interactions, which is helpful to
increase the likelihood of receiving answers.

6.4.2 Examples of Practical Manual Evaluation. Figure 11 presents three examples of manual
evaluation results. From these cases we can see that:

(1) The question titles with poor scores in Stack Overflow are often unclear (e.g., Example1)
and/or unappropriate (e.g., Example2). For such cases, the question titles generated by
our approach are more clear and attractive, such as Example1, and also questioning on
key information. For example, the newly generated question titles in Example2 are much
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Table 14. Ablation Evaluation (Python Dataset)

Measure ModelBasic ModelAtten ModelAtten+Coverage ModelAtten+Copy Ours
BLEU-1 25.1 ± 1.5% 28.6 ± 1.7% 29.6 ± 1.8% 31.5 ± 1.9% 35.8 ± 2.0%
BLEU-2 20.2 ± 0.7% 22.3 ± 0.8% 24.6 ± 0.6% 27.8 ± 0.8% 30.1 ± 0.9%
BLEU-3 19.1 ± 0.4% 21.7 ± 0.4% 23.8 ± 0.5% 25.4 ± 0.4% 26.8 ± 0.4%
BLEU-4 18.7 ± 0.3% 20.3 ± 0.3% 22.3 ± 0.2% 23.1 ± 0.2% 24.2 ± 0.3%
ROUGE-1 32.8 ± 2.0% 34.1 ± 2.3% 35.3 ± 2.2% 35.4 ± 2.4% 39.9 ± 2.5%
ROUGE-2 9.1 ± 0.8% 10.2 ± 1.2% 10.6 ± 2.1% 10.8 ± 2.0% 12.6 ± 2.5%
ROUGE-L 29.2 ± 5.8% 31.2 ± 2.0% 31.9 ± 2.1% 32.2 ± 2.2% 36.7 ± 2.4%

more appreciated by the evaluators than the original ones, which increases the likelihood
and willingness of the developers to offer help.

(2) Not all of the poor quality question titles can be improved by our approach. Notably for
some posts, our approach suffered from semantic drift, that is the questions generated
by our approach do not align well with the developers’ intent. Such as in Example3, the
developer’s problem was more about “writing with large data”, while the semantics of our
question generated has drifted to the problem of “java with bytebuffer”. This is because
the string variable “very large data” has been replaced by STR during data preprocessing,
such information loss hinders the learning process of our approach.

(3) Even though the results generated by our approach are still not perfect, our approach
is the first step on this topic and we also release our code and dataset to inspire further
follow-up work.

Answer to RQ-4: How effective is our approach for improving low-quality questions? In
general, for a large number of low-quality questions in Stack Overflow, our approach can improve
the quality of the question titles via Clearness, Fitness and Willingness measures.

6.5 RQ-5: How Effective is our use of attention mechanism, copy mechanism and

coverage mechanism under automatic evaluation?

6.5.1 Ablation Analysis Results. We added an attention mechanism, a copy mechanism and a
coverage mechanism to our sequence-to-sequence architecture. The ablation analysis is to verify
the effectiveness of the three mechanisms, to be more specific, we compare our approach with
several of its incomplete variants:

• ModelAtten+Copy removes the coverage mechanism from our approach.
• ModelAtten+Coverage removes the copy mechanism from our approach.
• ModelAtten removes the copy and coverage mechanism from our approach.
• ModelBasic removes all the attention, copy and coverage mechanism from our approach.

The ablation analysis results are presented in the Table 14 and Table 15. We can observe the
following points:

(1) By comparing the results of ModelBasic and ModelAtten, it is clear that incorporating
an attention mechanism is able to improve the overall performance. For example, by
adding attention mechanism, the average BLEU-4 score of the Attention-based model was
improved by 9% and 13.3%, ROUGE-L score was improved by 6.8% and 10.8% on Python
and Java dataset respectively. We attribute this to the ability of attention mechanism to

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 26. Pub. date: September 2020.



Generating Question Titles for Stack Overflow from Mined Code Snippets 26:27

Table 15. Ablation Evaluation (Java Dataset)

Measure ModelBasic ModelAtten ModelAtten+Coverage ModelAtten+Copy Ours
BLEU-1 20.5 ± 1.0% 25.2 ± 1.6% 27.8 ± 1.6% 29.7 ± 1.7% 31.8 ± 1.8%
BLEU-2 16.4 ± 0.6% 20.7 ± 0.7% 25.0 ± 0.6% 26.1 ± 0.6% 27.5 ± 0.7%
BLEU-3 17.8 ± 0.4% 21.1 ± 0.3% 23.6 ± 0.3% 24.4 ± 0.3% 25.2 ± 0.3%
BLEU-4 18.1 ± 0.2% 20.5 ± 0.2% 22.0 ± 0.1% 22.6 ± 0.2% 23.3 ± 0.2%
ROUGE-1 28.3 ± 1.3% 30.5 ± 2.0% 31.2 ± 2.0% 33.2 ± 2.1% 35.4 ± 2.2%
ROUGE-2 6.9 ± 0.5% 7.9 ± 1.1% 8.2 ± 1.2% 8.7 ± 1.5% 10.0 ± 1.8%
ROUGE-L 24.6 ± 1.1% 27.3 ± 1.8% 28.8 ± 1.9% 30.6 ± 2.0% 31.8 ± 2.2%

perform better content selection, which can focus on the more salient part of the source
code snippet.

(2) By comparing ModelAtten with ModelAtten+Copy and ModelAtten+Coverage, we can mea-
sure the performance improvements achieved due to the incorporation of copy mecha-
nism and coverage mechanism respectively. Better performance can be achieved by solely
adding copy or coverage mechanism to the attention-based model. This signals that both
copy and coverage mechanism do have contributions to the performance improvements.

(3) Without copy mechanism, there is a drop overall in every evaluation measure, the ROUGE-
L score drops 13% and 9.4% on Python and Java dataset respectively. On the other hand,
without coverage mechanism, we see a consistent but sufficiently lower drop in each eval-
uation measure, the ROUGE-L drops 12.3% on Python and 3.8% on Java.

(4) By comparing the results of our approach with each of the variant model, we can see
that no matter which type of mechanism we dropped, it does hurt the performance of our
model. This verifies the importance and effectiveness of these three mechanisms.

6.5.2 Examples of Ablation Analysis. To gain further insight into our approach, we further il-
lustrate some examples from the ablation analysis to show the effect of employing the attention,
copy and coverage mechanism. The results are shown in Figure 12, we can see that:

(1) Question titles generated by the basic model are of low-quality. Comparing the results of
the basic model and attention model, we can see that by adding the attention mechanism,
the generated question titles are more meaningful and relevant for the given code snippet.
The attention mechanism enables the model to focus on the relevant parts of the input
sequence as needed. As shown in Example1, the model will focus on the “request” related
segment in source code when it generates “post request” for the question title.

(2) Repetition is a common problem for attentional sequence to sequence models (e.g., [53, 56,
59]). Meaningless repeated words are produced during the generation process (highlighted
with yellow color). We introduce a coverage mechanism for discouraging such repetitions
in our generator by quantitatively emphasizing the coverage of sentence words while
decoding. As can be seen in Example2, “a harshmap” has been meaningless repeated twice,
employing the coverage mechanism can effectively discourage such repetitions.

(3) We observe that a high-quality question title is generated using our approach. Recall that a
code snippet usually contains tokens (highlighted with a blue color) with very rare occur-
rences. It is difficult for a decoder to generate such words solely based on language model-
ing. For such cases, we incorporate the copy mechanism to copy the rare tokens from the
code snippet to the question title. In the first example, the method name get_client_ip has
been properly picked up from the source code snippet to the generated question titles.
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Fig. 12. Ablation Analysis Example.

Answer to RQ-5: How effective is our use of attention mechanism, copy mechanism and
coverage mechanism under automatic evaluation? In summary, all the three mechanisms, i.e.,
attention mechanism, copy mechanism, coverage mechanism, are effective and helpful to enhance
the performance of our approach.

6.6 RQ-6: How Effective is Our Approach Under Different Parameter Settings?

One of the key parameter of our approach is the vocabulary size. The encoder-decoder architecture
models need a fixed vocabulary for the source input and target output. To generate all the possible
words, the basic Seq2Seq model has to include all the vocabulary tokens that appeared in the
training set, which requires a lot of time and memory to train the models. One advantage of our
model is that, with the help of copy mechanism, our approach can copy words from source input
to the target output. We can maintain a small size vocabulary which exclude the low frequency
words, but also get better performance and generalization ability.

We set different word frequency threshold, i.e., 1, 2, 3, 5, 7, 10, 100, for constructing the vocabu-
lary. Setting word frequency threshold to 1 means the vocabulary is constructed with words that
appeared at least twice in the training set. Different models were trained under these parameters
on the Python and Java datasets separately. The vocabulary size and training time under different
threshold are summarised in Table 16. Figure 13 and Figure 14 shows the influence of different
threshold settings on the BLEU-4 score and ROUGE-L score. We have the following observations
from these figures:

(1) Our approach achieves its best performance on Java dataset when the similarity threshold
set to 3, the corresponding vocabulary size is 79,048. When the vocabulary size is too big,
i.e., 221,160 with threshold equals 1, the BLEU4 and ROUGE-L score becomes lower. This is
because some non-generic words will be included in the fixed vocabulary, which leads to
difficulties for our approach to learn how to copy words from the input source sequence.
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Table 16. Vocab Size & Training Time(Per Epoch)

Python

Threshold Vocab Size Training Time
1 58,536 766.9
2 49,656 719.1
3 36,277 663.7
5 22,244 593.8
7 16,368 549.2
10 12,142 539.1
100 2,503 499.9

Java

Threshold Vocab Size Training Time
1 221,160 2218.3
2 131,862 1692.3
3 79,048 1074.1
5 54,352 962.2
7 38,670 898.4
10 27,341 831.4
100 4,642 723.8

Fig. 13. BLEU4 Score under different vocab threshold.

(2) The results of our approach are best on Python dataset when the word frequency threshold
set to 1, the corresponding vocabulary size is 58,536. Compared with the results of the Java
dataset, the optimum vocabulary size settings of our approach can be around 60000.

(3) When the word frequency threshold rockets up to 100, the vocabulary size decreases to
2,503 and 4,626 on Python and Java dataset respectively. Even with a much smaller vocab-
ulary size, our approach can still have a comparable performance against Basic Seq2Seq
model, which further supports the generalization ability of our approach.

Another parameter of our approach is the dimension of word embeddings. We choose five differ-
ent word embedding sizes, i.e., 100, 200, 300, 400, 500, and qualitatively compare the performance
of our approach in these different word embeddings. Figure 15 and Figure 16 show the influence
of different word embedding sizes on the BLEU-4 and ROUGE-L score. One can clearly see that
our approach achieves the best BLEU-4 and ROUGE-L score when the embedding size is set to 300.
Too large word embedding size may not be helpful to improve the accuracy.
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Fig. 14. ROUGE-L Score under different vocab threshold.

Fig. 15. BLEU4 Score under different sizes of word embeddings.

Fig. 16. ROUGE-L Score under different sizes of word embeddings.

6.7 RQ-7: How Efficient is Our Approach in Practical Usage?

The experiment was conducted on an Nvidia GeForce GTX 1080 GPU with 8GB memory. The time
cost of our approach is mostly for the training process which takes approximately 8 to 10 hours
for different datasets. The testing process on around 3,000 examples takes one to three minutes,
while generating a single question title only costs 20 to 60 ms.

Considering that the query for generating a question title using our approach is efficient, we
have implemented our approach as a standalone web-based tool, named Code2Que, to facilitate
developers in using our approach and to inspire follow up research. Figure 17 shows the web
interface of Code2Que. Developers can copy and paste their code snippet into our web application.
Code2Que embeds the code snippet via source code encoder and generates the question titles for
the developers. We below describe the details of the input and output of such a process.
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Fig. 17. CODE2QUE Web Service Tool.

• Input: the input to the Code2Que is a code snippet, which is an ordered sequence of source
code lines. We have provided support for different types of programming languages (e.g.,
Python, Java, Javascript, C# and SQL) for users to select. The input box in Figure 17 shows
an example of a Python code snippet. After inputting the code snippet, the developers can
click the “Generate” button to submit their query.

• Output: the output of Code2Que is in two parts: (i) Generated Questions: Code2Que will
generate a question title using our backend model according to the code snippet and pro-
gramming language they choose. For example, “how to extract text from html pages using
html2text” is generated for the given code snippet. (ii) Retrieved Questions: After the devel-
oper submits his/her code snippet to the server, the code snippet is converted into a vector
by our backend Source Code Encoder, then Code2Que searches through our codebase and
returns the top3 questions with similar code snippets. The link to these questions on the
Stack Overflow website is also provided for reference. Developers can use these to quickly
browse the related questions to have a better understanding of the problem.

Answer to RQ-7: How efficient is our approach in practical usage? In summary, our ap-
proach is efficient enough for practical use and we have implemented a web service tool, named
Code2Que, to apply our approach for practical use.

7 DISCUSSION

In this section, we discuss the main contribution of our work and analyze the strength and potential
weakness of our work associated with each contribution.

7.1 Question Quality Improvement

It is important for CQA forums to maintain a satisfactory quality level for the questions and an-
swers so as to improve community reputation and provide better user experience. Questions are a
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fundamental aspect of a CQA website. Poorly formulated questions are less likely to receive useful
responses, thus hindering the overall knowledge generation and sharing process.

• Strength of our work. Previous work related to CQA quality studies focus on question qual-
ity prediction. For example, the authors in [51] developed a model for predicting question
quality using the content of the question. The authors in [4] proposed a method to identify
inappropriate questions by using previously asked similar questions. Different from the ex-
isting research, our study aims to improve low-quality questions in Stack Overflow. To the
best of our knowledge, this is the first work that investigates the possibility of automatically
improving low-quality questions in Stack Overflow.

• Weakness of our work. According to our practical manual evaluation results, our approach
can improve a large number of low-quality questions in Stack Overflow via Clearness, Fitness
and Willingness measures. However, the results generated by our approach are still not
perfect, and for some posts, our approach suffers from semantic drift problems. We plan to
incorporate more context information for generating better question titles in the future.

7.2 Deep Sequence to Sequence Approach

Recently, deep learning has achieved promising results in solving many software engineering
tasks, such as code search (e.g., [24, 31, 39]), code summarization (e.g., [30, 32, 33, 62]), and API
recommendation (e.g., [25, 26]). Among these works, a number of researchers have applied the
sequence to sequence methods for mining the 〈natural language, code snippet〉 pairs, such as the
commit message generation. (e.g., [32, 33]).

• Strength of our work. A major challenge for question generation tasks in our study is the
semantic gap between the code snippet and natural language descriptions. To bridge the
gap between code fragment and natural language queries, we employed a deep sequence to
sequence approach to build the neural language model for both code snippets and nat-
ural language questions. The neural language model automatically learns common pat-
terns from the large scale source code snippets. Furthermore, different from the existing
sequence to sequence learning approach, we add attention, copy and coverage mechanism
to our sequence-to-sequence architecture to suit our specific task. The attention mechanism
can perform better content selection from the input, while the copy mechanism can handle
the rare word problems among the code snippet, and the coverage mechanism can eliminate
the meaningless repetitions.

• Weakness of our work. Previous works [30, 32, 62] have shown that incorporating structural
information of the source code (i.e., the AST) can improve the performance of the model,
However, considering that the majority of the code snippets are not parsable in Stack Over-
flow, we do not use the AST structural information at the current stage. We plan to use
the program repair algorithm to fix the code snippet in Stack Overflow and employ more
contextual information of the source code in the future.

7.3 Question Generation Task

Stack Overflow is a collaborative question answering website, its target audience are software
developers, maintenance professionals and programmers. Over the recent years, Stack Overflow
has attracted increasing attention from the software engineering research community. However,
since the questions and answers posted by developers on Stack Overflow are usually unstructured
natural language texts containing code snippets, which makes it more challenging for researchers
to mine and analyze these posts.
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• Strength of our work. To improve the software development process, researchers have in-
vestigated the Stack Overflow knowledge-base for various software development activities,
such as predicting the post quality [4, 50, 51, 72, 73], answer recommendation [22, 55, 70],
code/questions retrieval [2, 9, 16, 29, 71] etc. However, to the best of our knowledge, this is
the first work which investigates the question generation task in Stack Overflow. We first
perform such a task to assist developers to generate a question title when presenting a code
snippet.

• Weakness of our work. We collected more than 1M 〈code snippet, question〉 pairs from Stack
Overflow, which covers a variety of programming languages (e.g., Python, Java, Javascript,
C# and SQL). Considering our study is the first step on this topic, we have published our
data to inspire further follow-up work. However, even though we have cleaned the data
via pre-processing, some data may still be noisy. We plan to improve the dataset quality by
further manual checking in the future.

8 THREATS TO VALIDITY

We have identified the following threats to validity among our study:

Internal Validity. Threats to internal validity are concerned with potential errors in our code
implementation and study settings. For the automatic evaluation, in order to reduce errors, we
have double-checked and fully tested our source code. We have carefully tuned the parameters of
the baseline approaches and used them in their highest performing settings for comparison, but
there may still exist errors that we did not note. Considering such cases, we have published our
source code and dataset to facilitate other researchers to replicate and extend our work.

External Validity. The external validity relates to the quality and generalizability of our
dataset. Our dataset is constructed from the official Stack Overflow data dump which contains a
variety of programming languages, such as Python, Java, Javascript, C# and SQL. However, there
are still many other programming languages in Stack Overflow which are not considered in our
study. We believe that our results will generalize to other programming languages, due to the
overall reasonable similarity in code snippets despite particular language syntax, semantics and
APIs. We will try to extend our approach to other programming languages to benefit more users
in future studies.

Construct Validity. The construct validity concerns the relation between theory and observa-
tion. In this study, such threats are mainly due to the suitability of our evaluation measures. For
the practical manual evaluation, the manual validation could be affected by the subjectiveness of
the evaluators and the human errors. For the human evaluation, the evaluators’ degree of careful-
ness, effort and English skills in the examination process may affect the validity of judgements. We
minimized such threats by choosing experienced participants who have at least one year of study-
ing/working experience in English speaking countries, and are familiar with Python and Java pro-
gramming languages. We also gave the participants enough time to complete the evaluation tasks.

Conclusion Validity. The conclusion validity relates to issues that could affect the ability to
draw correct conclusions about relations between the treatment and the outcome of an exper-
iment. One issue during the data filtering procedure is that we only keep the questions which
contain several keywords, such as “how”, “what”, “why”. However, since the questions in Stack
Overflow can be rather complicated, our results do not shed light on how effective our solution
is on questions of other kinds. On the other hand, from the human evaluation analysis, we see a
key challenge for our current work is that the questions generated by our approach suffered from
semantic drift. This is because it is difficult to judge a question poster’s intent by solely looking at
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his/her code snippet. In such a case, more relevant information such as question description, ques-
tion tags could further be incorporated within our model, which may help to generate a question
that is more accurate and precise.

9 CONCLUSION AND FUTURE WORK

In this work, we have proposed a model for the task of automatic question generation based on
a given code snippet. Our model is based on sequence-to-sequence architecture, and enhanced
with an attention mechanism to perform better content selection, a copy mechanism to handle the
rare-words problem within the input code snippet as well as coverage mechanism to discourage
the meaningless repetitions. We carried out comprehensive evaluation on Stack Overflow datasets
to demonstrate the effectiveness of our approach, compared with several existing baselines, our
model achieves the best performance in both the automatic evaluation and human evaluation.
We have also released our code and datasets to facilitate other researchers to verify their ideas
and inspire the follow up work. For future work, we plan to design better models to generate
meaningful question titles by considering extra context information, such as question description.
Additional work will be needed to address this context-sensitive question generation task.
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