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Abstract—To speed up the bug-fixing process, it is essential to
triage bugs into the right components as soon as possible. Given
the large number of bugs filed everyday, a reliable and effective
bug-component triaging tool is needed to assist this task. LR-
BKG is the state-of-the-art toolkit for doing this. However, the
suboptimal performance for recommending the right component
at the first position (low Top-1 accuracy) limits its usage in
practice. We thoroughly investigate the limitations of LR-BKG
and find out the gap between the manual feature design of
LR-BKG and the characteristics of bug reports causes such
suboptimal performance. Therefore, we propose an approach,
DEEPTRIAG, which uses the large scale pre-trained models to
extract deep features automatically from bug reports (including
bug summary and description), to fill this gap. DEEPTRIAG

transforms bug-component triaging into a multi-classification
task (CodeBERT-Classifier) and a generation task (CodeT5-
Generator). Then, we ensemble the prediction results from
them to improve the performance of bug-component triaging
further. Extensive experimental results demonstrate the superior
performance of DEEPTRIAG on bug-component triaging over LR-
BKG. In particular, the overall Top-1 accuracy is improved
from 56.2% to 68.3% on Mozilla dataset and from 51.3% to
64.1% on Eclipse dataset, which verifies the effectiveness and
generalization of our approach on improving the practical usage
for bug-component triaging.

Index Terms—Bug Triaging, Deep Learning, Text Classification

I. INTRODUCTION

Nowadays, bug reports play an essential role in outlining

information about what is going wrong about software. Typ-

ically, when a developer or user encounters an unexpected

outcome, he/she may formulate this problem as a bug report

(usually including the bug summary and bug description) and

submit this bug to the bug tracking system (e.g., Bugzilla).

Considering the huge amount of bugs that happen day-to-

day and the sheer amount of information contained in the

bug report, it is very time-consuming and labor-intensive to

manually triage the bug into the target component. Moreover,

since the lack of knowledge or missing the context information

∗Corresponding author.†Also with Australian National University.

of specific bugs, this process is often error prone [1]. For the

wrongly assigned bug report, it has to be reassigned/tossed to

the next possible component, which may cost a lot of human

resources and/or wait a long time before the bug is assigned

to the right component, leaving the developers or the users

unsatisfied. Therefore, it is preferable to have toolkits that

can automatically triage newly generated bugs to the right

component. The previous works [1], [2] have investigated

the bug-component triaging task. Su et al. [1] propose a

model, namely LR-BKG, which achieves the state-of-the-art

performance for bug-component triaging on both tossed bugs

and non-tossed bugs. For bug reports having the reassignment

process, we call them tossed bugs. If bug reports are assigned

to the right components initially, they are non-tossed bugs.

However, as shown in their paper [1], we found that LR-

BKG has a relatively suboptimal performance regarding Top-1

accuracy (i.e., 56.2%). After empirically investigating their ex-

perimental results, we find two main challenges their approach

fails to handle. These two main challenges are about two

concepts: confusing components and few shot components.

For confusing components, if more than one bug of component
A was once mistossed to component B, component B is the

confusing component of component A. For example, there

are 16 bugs belonging to Toolkit::Password Manager: Site

Compatibility once mistossed to Toolkit::Password Manager.

Thus, Toolkit::Password Manager is the confusing component

of Toolkit::Password Manager: Site Compatibility. Few shot

components are referred to as components with limited bugs.

With these two concepts, the two main challenges are as

follows:

Firstly, LR-BKG cannot accurately handle the challenge of

confusing component distinction. As shown in Section II-A1,

the mistossed bugs by LR-BKG are, more often than not,

wrongly assigned to their confusing components. If the bugs

which have been triaged into confusing components can be

correctly assigned, the performance of LR-BKG will be signif-

icantly boosted. Secondly, LR-BKG has difficulty in precisely

triaging bugs belonging to few shot components. That is, if the
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target component contains limited bugs, LR-BKG is hard to

route the newly generated bug to it. If this challenge is solved,

the performance on few shot components will be improved.

We attribute these two challenges to the gap between the

characteristics of bug reports and the feature design of the

state-of-the-art bug-component triaging tool (i.e., LR-BKG).

First, the handcrafted features designed by LR-BKG are too

shallow and coarse to capture the key information among

the confusing components. Second, the manually designed

features rely on the experience and knowledge of human

experts, which can not properly handle specific cases (e.g.,

few shot components). To bridge the gap between the data

and the tool, we adopt the large scale pre-trained models (i.e.,

CodeBERT and CodeT5) as feature extractors for this task. A

huge number of works based on the pre-trained models have

been proved to be effective for learning implicit connections

and semantic features from natural language text [3], [4].

In particular, we propose a neural network based model,

named DEEPTRIAG to do bug triaging among components, es-

pecially for improving the suboptimal Top-1 accuracy. DEEP-

TRIAG consists of three parts: in the first part, we train a

classifier (CodeBERT-Classifier) to calculate the probabilities

of a bug report belonging to different components based

on the features extracted by CodeBERT [5]. In the second

part, we transform bug-component triaging into a generation

task (CodeT5-Generator), which generates the corresponding

component based on the bug summary and description of bug

report by using the encoder and decoder model, CodeT5 [6].

At last, we ensemble all the prediction results of the above

classifier and generator to get better overall prediction results.

The extensive experiments show that our model outperforms

the state-of-the-art bug-component triaging tool, LR-BKG, by

a large margin, and significantly improves the suboptimal

performance on Top-1 accuracy for bug-component triaging.

This work makes the following contributions:

• We thoroughly analyze the state-of-the-art tool, LR-BKG

and find out its limitations on the bug-component triaging.

• We propose a deep-learning based approach for bug-

component triaging, named DEEPTRIAG.

• For generalization, we evaluate LR-BKG and DEEP-

TRIAG on bug reports from both Mozilla and Eclipse.

• The experimental results show the superiority of our

model over the state-of-the-art baseline, especially the

Top-1 accuracy. Our replication package can be found

here.

II. MOTIVATION

The state-of-the-art toolkit, LR-BKG [1] utilizes a learning

to rank framework combining with bug tossing knowledge

graph to perform bug triaging among components. It manually

designs a rich set of features covering bug feature, component

features and bug-component features. Bug-component features

aim at capturing the bug-component relations. For each bug-

component pair, it explicitly models bug-component relations

with similarities between the bug summary and the informa-

tion (component name, component description and bugs) of

(a) Component-Level Top-1 Accuracy for Tossed Bugs

(b) Component-Level Top-1 Accuracy for Non-Tossed Bugs

Fig. 1: Component-Level Top-1 Accuracy Distribution

TABLE I: No. Bug Distribution of Product::Component

#Group 1 2 3 Sum

#Train Bug 31-250 250-500 500+ 78,870
#P::C 91 46 49 186

the component. For the similarities between the bug and bugs

of components, LR-BKG takes Top-30 of them as features.

LR-BKG has been shown the effectiveness of recommend-

ing top-10 components. That is, Top-10 accuracy can reach

88.1% on average. It falls short, however, in accurately recom-

mending an actual top-1 component, namely Top-1 accuracy

(46.9% for tossed bugs and 59.3% for non-tossed bugs). Due

to the suboptimal performance on recommending components

at top-1 position, it is still difficult and time-consuming for

bug reporters to decide which components to choose from

the ranking list. Therefore, it is necessary to improve Top-1

accuracy, especially for the toolkit usage in practice.

Given the limitations of the existing toolkit in the above

aspect, we investigate the causes by analyzing data character-

istics, experimental results as well as their approach design.

The dataset we use is exactly the one in the paper [1], namely

98,587 bugs covering 186 components from the Mozilla’s

Bugzilla website. We found that there are two main disad-

vantages of LR-BKG which lead to the suboptimal Top-1

accuracy: (i) LR-BKG performs relatively poor on confusing

component distinction. (ii) LR-BKG cannot handle the few

shot components properly.

A. Limitations of the state-of-the-art toolkit

1) Poor performance on confusing component distinction:
There are 19,717 test bugs covering 186 product::components.

Among them, 5,061 bugs are tossed bugs (bugs having been

tossed) and 14,656 bugs are non-tossed bugs (bugs initially

assigned to correct components). From the experimental re-

sults of test bugs, a large number of them are mistossed into

confusing components.

For tossed bugs, LR-BKG can correctly predict 2,376 bugs

at the top-1 position, namely Top-1 accuracy 46.9%. There

are 1,265 bugs mistossed into their confusing components. For

these bugs, suggest if we could successfully assign them, i.e.,

if bugs mistossed to confusing components are assigned into

the correct components, Top-1 accuracy will have a significant
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improvement, overall from 46.9% to 71.9%. Besides the

overall Top-1 accuracy, we also compute the Top-1 accuracy

for tossed bugs in each component by LR-BKG, shown in

Figure 1a. The green boxplot is the component-level Top-

1 accuracy distribution for tossed bugs. The red one shows

the ideal component-level Top-1 accuracy distribution if we

could successfully handle tossed bugs mistossed into confusing

components. From the comparison with these two boxplots, we

can know that further distinguishing confusing components is

also beneficial for the performance of bug-component triaging

on each component.

For the non-tossed bugs, the Top-1 accuracy of LR-BKG

is 59.3%, which is higher than tossed bugs due to the less

confusing bug summary. However, there are still 2,043 non-

tossed bugs mistossed into the confusing components, which

means there will be a big improvement on overall Top-

1 accuracy from 59.3% to 73.3% for non-tossed bugs as

well, if we could distinguish confusing components better.

The component-level Top-1 accuracy for non-tossed bugs is

shown in Figure 1b, also indicating that the better confusing

component distinction improves bug-component triaging for

each component.

After investigating the failed cases on confusing compo-

nents, we summarize that the main reason of this phenomenon

is too coarse feature design of LR-BKG to distinguish confus-

ing components. Since most features in LR-BKG are to calcu-

late cosine similarities of the given bug summary and historical

bug summaries in components. These cosine similarity-based

features are hard to capture the subtle difference among bugs.

For example, from Section I, we know that

Toolkit::Password Manager is the confusing component

of Toolkit::Password Manager: Site Compatibility. Both of

them are about issues of autofill, autocomplete or saving of

logins, but Toolkit::Password Manager: Site Compatibility

is for issues not working on the specific site. As a result,

bugs in these two components tend to have similar text

expression on the whole. The only difference is that bugs

in Toolkit::Password Manager: Site Compatibility contain

the specific site where issues happened. For example, Bug

1630553 in Toolkit::Password Manager: Site Compatibility

states “Username is not captured for dismissed doorhanger

on alipay.com”. While another Bug 1612255 in its confusing

component, Toolkit::Password Manager, says “Use username

field edits to adjust the dismissed login capture doorhanger”.

The large proportion of common tokens (i.e., “username”,

“capture”, “dismissed”, “doorhanger”) between these two

bug summaries result in a relatively high cosine-similarity

score. This demonstrates that they have a high probability

of belonging to the same component. But they belong to

different components since Bug 1630553 only happens on

a specific site, i.e. “alipay.com”. The associated features

of LR-BKG cannot capture this subtle difference and thus

mislead the prediction result.

Fig. 2: Component-Level Top-1 Accuracy Distribution
Blue boxplot is for components with 500+ bugs;

Red boxplot is for components with 250-500 bugs;
Green boxplot is for components with 0-250 bugs;

In summary, too coarse-grained feature design of LR-

BKG leads to the suboptimal performance on confusing

component distinction. If we can solve this challenge, the

performance of bug-component triaging will be improved

significantly, especially Top-1 accuracy.

2) Unfriendly to few shot components: As mentioned in

[7], although Mozilla has thousands of components, in the

past two years, only 225 components out of 396 components

had more than 49 bugs, which means the number of bugs

contained in each component varies greatly. Based on this

observation, we investigate bug distribution over different

components and the effect of various bug distributions on bug-

component triaging of LR-BKG.

We first divide the components into three different groups

according to the training bug distribution of components

(78,870 training bugs covering 186 components). As shown in

Table I, there are 91 components contain bugs in the range of

31-250 (Group 1), namely almost half of the 186 components.

For example, Core::Print Preview only has 31 bugs in total. 46

components have bugs in the range from 250 to 500 (Group

2). The top 49 components have more than 500 bugs (Group

3), such as the largest component Core::CSS Parsing and

Computation having 3,762 bugs. From the data distribution,

we can see that bugs are not evenly spread across different

components. We further check the experimental results to

investigate whether the LR-BKG can handle such skewed

dataset properly. The results are shown in Fig 2.

From Fig 2, we observe that for LR-BKG, the components

with more bugs tend to have a better bug-component triaging

performance. For example, the median Top-1 accuracy of three

groups is respectively 41.9% (Group 1), 50.7% (Group 2) and

66.5% (Group 3). Moreover, the performance of Group 3 is

obviously better than Group 1 and 2. As a result, we refer to
the components with less than 500 bugs, which LR-BKG
cannot handle properly as the few shot components.

We attribute the poor performance of LR-BKG on the few-

shot components to the following reason: The bug-component

feature design is unfriendly for components with few bugs. In

detail, LR-BKG takes Top-30 cosine similarities between the

bug summary and historical bug summaries in components as

features, which put the few shot components at a disadvantage,

such as Core::Print Preview only having 31 historical bugs

totally. Such few shot components have limited number of

bugs, many dimensions of Top-30 similarities are more likely

to be zero, which makes this feature less effective or even

misleading. On the contrary, components with more bugs have

a higher probability to be assigned.
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Feature design of LR-BKG is unfriendly to few shot

components, which put them at a disadvantage.

B. Challenges and potential solutions

From the above two phenomena, we can conclude that

there is a gap between bug report characteristics and feature

design of LR-BKG. First, manual feature design of LR-BKG is

too coarse to distinguish confusing components well. Second,

feature design is unfriendly to few shot components. Both of

them lead to the suboptimal Top-1 accuracy. To improve the

suboptimal Top-1 accuracy, the challenge is to fill the gap

between the data characteristics and feature design of LR-

BKG. We try to overcome it from two aspects: data itself and

the feature design.

From data perspective, besides bug summary, we introduce

additional information from bug reports. As bug description is

the supplement of bug summary, it contains more details about

the bug, such as prerequisites, steps to reproduce, expected

result, actual result, etc. Therefore, we attempt to make full

use of bug description for alleviating the difficulty on differ-

entiating the confusing components. For example, although

the summary of Bug 1630553 and Bug 1612255 are quite

similar but the detailed bug descriptions are different. Hence,

bug description can be helpful for distinguishing confusing

components further.

For features, we adopt large scale pre-trained models to

extract features automatically during training. Compared with

hand-crafted features designed beforehand, which heavily de-

pend on the experience and domain knowledge of the human,

features from pre-trained models are learned from data au-

tomatically. Besides, pre-trained models learn deep features

from the bug itself without resorting to other similar bugs,

which is more friendly to few shot components. Therefore,

features from pre-trained models can be more suitable for

data characteristics and the specific tasks, which is a possible

solution to fill the gap between data characteristics (i.e.,

confusing components, few shot components) and high-level

feature design.

The gap between bug characteristics and manual feature

design of LR-BKG leads to the suboptimal Top-1 accuracy.

In this study, we introduce more information from bug (i.e.

bug description) and use neural network to learn features

automatically during training to rescue.

III. BACKGROUND

Large scale pre-trained models based on Transformer archi-

tectures [4] have recently achieved great success and become a

milestone on the natural language processing (NLP) and code-

related tasks. Since they can effectively capture the semantic

information from a massive amount of data automatically, it is

now a very common way to adopt the pre-trained models as

backbone for downstream tasks rather than learning models

from scratch. From Section II, due to the gap between bug

characteristics and manual feature design of LR-BKG leading

to a suboptimal bug-component triaging performance, we try

Bug Report

CodeBERT-Classifier

Ensemble Algorithm

Product::Component Generated Component

CodeT5-Generator
Loss

Product::
Component

Bug Summary Bug Description
Bug Summary

Bug Description

CodeT5 Decoder

CodeT5 Encoder

Bug Summary

Bug Description

Fully Connected Layer

CodeBERT Encoder

Output Probabilities

Product::
Component

Numeric labels

Loss

Fig. 3: Architecture of DEEPTRIAG

to use the powerful pre-trained models for capturing features

automatically during training to rescue.

CodeBERT. Bug reports generally consist of natural lan-

guage description mixed with code artifacts. Therefore, unlike

BERT [3], RoBERTa [8], GPT [9] and XLNET [10] learning

effective contextual representations from massive text for

natural language processing tasks, CodeBERT [5], which is

a bimodal pre-trained model for natural language (NL) and

programming language (PL), is more suitable for dealing

with bug reports. Following BERT [3] and RoBERTa [8],

CodeBERT uses multi-layer bidirectional Transformer [4] as

the model architecture. To use both bimodal instances of NL-

PL pairs and unimodal codes, CodeBERT is trained with

a hybrid objective function, along with standard masked

language modeling [3] and replaced token detection [11].

Moreover, GraphCodeBERT [12] builds on CodeBERT by

incorporating the data flow extracted from the code structure

into CodeBERT. Note that code artifacts included in bug

reports are usually some code snippets, identifiers, etc, instead

of complete code methods. Thus, it is not necessary to capture

code structure information of code artifacts from bug reports.

CodeT5. Based on the different architectures, pre-trained

models based on Transformers [4] can generally be classi-

fied into three groups: encoder-only models (e.g., BERT [3],

RoBERTa [8] and CodeBERT [5]), decoder-only models like

GPT [9] and encoder-decoder models, such as T5 [13],

CodeT5 [6]. For generation tasks, most encoder-only and

decoder-only models have a suboptimal performance. Take

CodeBERT [5] as an example. CodeBERT need to add an

additional decoder for generation tasks, where this decoder

cannot benefit from the pretraining [6]. CodeT5 [6] has the

same architecture as T5 [13]. Moreover, CodeT5 uses a novel

identifier-aware objective to distinguish identifiers and recover

them when masked for fusing code-specific knowledge [6].

CodeT5 also leverages the code and its corresponding com-

ments to learn a better NL-PL alignment. Above, CodeT5

is a more suitable model for generation tasks with dataset

including both NL and PL.

IV. APPROACH

To address the aforementioned shortcomings of LR-BKG,

we propose a deep-learning based model, named DEEPTRIAG.

The architecture of the approach is shown in Fig. 3. DEEP-

TRIAG consists of three parts: the first part is a multi-

classification model based on the large scale pre-trained model

CodeBERT, i.e., CodeBERT-Classifier. For a given bug report
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(including bug summary and bug description), the classifier

quantitatively calculate the probability of the bug report be-

longing to each component. In the second part, we transform

the bug-component triaging task into a generation task by

using CodeT5 as a generator, namely CodeT5-Generator. It

can generate the corresponding component according to the

summary and description of the given bug report. Lastly, we

ensemble the output results of the above two modules to get

the final predicted component.

A. Multi-classification based Triaging

In this section, we transform bug-component triaging as a

multi-classification task by regarding components as classes

and classifying bug reports into their corresponding compo-

nents.

Our multi-classification model is composed of two parts,

the encoder and the fully connected layer. First, we transform

the bug report into vector representation by the encoder. Then

we project the vector representation into the dimension of

components by using a fully connected layer. The final output

scores represent the probability distribution of the bug report

belonging to different components.

Specifically, given a bug report B, the input to encoder is

the bug summary S and the bug description D, namely 〈S,D〉
pair. Then, the encoder maps the input into a contextualized

vector hB , where hB denotes the embedding vector of the

given bug report. To estimate the matching score between a

bug report and different components, we input the embedding

vector hB into a fully connected layer, which projects hB into

the dimension of component labels [14], [15]. In other words,

the linear layer is fomulated as follows:

l = φ (hB) = a
(
WThB + b

)
(1)

where W, b and a are the weight matrix, bias vector, and

activation function for the linear layer respectively. hB is the

embedding vector generated by the encoder. For a given bug

report, we obtain the logits of all the component labels, l =
(l1, . . . , lK), K is the number of components. Then the logit

scores of component label are normalized as follows:

σ(l)i =
eli

∑K
j=1 e

lj
for i = 1, . . . ,K (2)

where σ is the softmax function which normalizes the output

scores to a probability distribution over predicted components.

Since bug reports often contain code artifacts, we adopt

the pre-trained model, CodeBERT [5] as the encoder for this

task to capture the better implicit semantics information from

both natural and programming language. We call this multi-

classification model as CodeBERT-Classifier. For a given bug

report, CodeBERT-Classifier calculates the probability scores

for the bug report belonging to each component.

B. Generation based Triaging

Previous work [1] indicates that component names reveal

the identity of components (e.g., key functionality or concept)

in a concise form, which provides useful information for

bug-component triaging (e.g., from the component name,

Toolikit::Password Manager, we can know it’s a component on

password management). However, multi-classification based

triaging transforms bug-component triaging into a classifica-

tion task, which regards component names as numeric labels

losing the information contained in them. Thus, we use a

generation task to take full advantage of the information

in component names. The basic idea is to treat the bug-

component triaging as a “text-to-text” task, i.e., taking bug

reports as input and generating corresponding components as

output.

Specifically, given the bug report B, the bug summary S
= {s1, . . . , sN} consisting of N tokens and bug description

D = {d1, . . . , dM} including M tokens. The component C
corresponds to L tokens {c1, . . . , cL}. The generation model

takes the bug summary S and bug description D as input and

then learn to generate the corresponding C one token at a time

based on the 〈S,D〉 and all preceding tokens that have been

generated so far, shown as follows:

Pθ(C | 〈S,D〉) =
L∏

i=1

Pθ (ci | c1, . . . , ci−1; S,D) (3)

where θ represents our generation model. Pθ(C | 〈S,D〉)
can be seen as the conditional likelihood of the component

C given the 〈S,D〉. We train the model θ by maximizing

the conditional likelihood over the training dataset. During

the inference phase, the output sequences are generated by

using the beam search algorithm [16] when decoding. For each

given bug report B, we generate a list of components with

their corresponding output scores. The output score indicates

the possibility of B belonging to the component. Then, we

normalize the output scores by using the softmax function,

shown in Equation 2 to get the generative scores. Since

components are fed into the generation model for training,

the information contained in components can be learned by

the model.

We use CodeT5 [6] as the generation model since CodeT5

is a unified pre-trained encoder-decoder Transformer model,

which has a better performance than the encoder-only (or

decoder-only) pre-trained models for generation tasks. Be-

sides, CodeT5 exploits the user-written code comments with a

bimodal dual generation task for better NL-PL alignment [6],

which is more suitable for bug reports including code artifacts

than T5 [13].

C. Ensemble

Considering CodeBERT-Classifier and CodeT5-Generator

use different pre-trained models (i.e., CodeBERT, an encoder

model and CodeT5, an encoder-decoder model) and treat the

bug-component triaging as different tasks (classification and

generation task), they have advantages on different cases.

Thus, we use an ensemble algorithm to combine the above

two modules for the better performance.

Specifically, given a bug report B, CodeBERT-Classifier

outputs a set of probability scores P = {p1, . . . , pK} for
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the bug report belonging to all K components. CodeT5-

Generator generates a list of components with corresponding

generative scores that B might belong to. Note that generating

K components by CodeT5-Generator is time-consuming, we

do a trade-off between the performance and the efficiency by

only generating Top-10 components (due to Top-10 outputs

covering the target component in most cases). For components

out of the generated Top-10 components, the generative scores

are set to zero. Moreover, if CodeT5-Generator outputs text

not corresponding to any components, we just throw them

away. After applying the above rules, we get the generative

scores of all K components, namely G={g1, . . . , gK}. Then

we ensemble the probability scores and generative scores by

the following equation:

Z = ωG+ P (4)

where Z = {z1, . . . , zK} are the final predicted scores for all

K components. ω is a weight value to increase the weight

of generative scores G to make G and P comparable, since

generative scores are generally much smaller than probability

scores. Then, all components are ranked by their final pre-

dicted scores. Finally, we recommend the component with the

highest score as the prediction result and triage the bug report

into the component.

V. EVALUATION

This section answers the following three research questions:

RQ1: How effective is our approach in bug-component

triaging?

RQ2: Is bug description useful for improving the compo-

nent recommendation?

RQ3: How effective are modules in DEEPTRIAG for bug-

component triaging?

A. Experimental Setup

1) Dataset: To thoroughly evaluate the performance and

verify the generalization of DEEPTRIAG, we use two datasets

from different open source software projects, Mozilla and

Eclipse. LR-BKG has been evaluated on the dataset from

Mozilla in the work [1]. To make a fair comparison with

LR-BKG, we use the same dataset and splitting strategy as

LR-BKG [1] on Mozilla, which contains 98,587 closed bugs

covering 6 products and 186 components. 29,100 out of these

are tossed bugs. In particular, to simulate real-world context,

the dataset is divided into 80% and 20% according to chrono-

logical order. Finally, we obtain 78,870 bugs (including 24,039

tossed bugs) with creation time before 25th February, 2020

as “historical” training data. The rest 19,717 bugs (including

5,061 tossed bugs) are “future” testing dataset. Besides the

Mozilla dataset, to verify the generalization of our model,

we also collect dataset from Eclipse, namely 198,416 closed

bugs (38,673 tossed bugs and 159,743 non-tossed bugs) from

6 products and 46 components. We use the same splitting

strategy as Mozilla to get 158,733 train data (33,070 tossed

bugs) and 39,683 test data (5,603 tossed bugs).

(a) Mozilla

Tool Category Top-1 Top-3 Top-5 Top-10 MRR

BugBug Tossed 0.378 0.608 0.680 0.760 -

Non-Tossed 0.468 0.642 0.697 0.764 -

Overall 0.445 0.633 0.692 0.763 -

LR-BKG Tossed 0.469 0.701 0.772 0.848 0.608

Non-Tossed 0.593 0.779 0.836 0.892 0.702

Overall 0.562 0.759 0.820 0.881 0.678

DEEPTRIAG Tossed 0.554 0.764 0.819 0.881 0.675

Non-Tossed 0.727 0.857 0.890 0.930 0.802

Overall 0.683 0.833 0.872 0.917 0.769

(b) Eclipse

Tool Category Top-1 Top-3 Top-5 Top-10 MRR

LR-BKG Tossed 0.486 0.731 0.807 0.879 0.629

Non-Tossed 0.517 0.711 0.776 0.849 0.637

Overall 0.513 0.714 0.780 0.853 0.636

DEEPTRIAG Tossed 0.571 0.820 0.882 0.942 0.710

Non-Tossed 0.652 0.839 0.883 0.933 0.758

Overall 0.641 0.836 0.883 0.935 0.751

TABLE II: Top-k Accuracy & MRR

2) Evaluation Metrics: In this work, our aim is to improve

the suboptimal performance for recommending the correct

component. Therefore, we adopt the widely-accepted evalu-

ation metrics, Top-k accuracy and Mean Reciprocal Rank
(MRR) to measure the performance of our model. Top-k accu-

racy is
∑

bi∈B isCorrect(bi,Top-k)/|B| where B represents

the set of all test bugs and we set the isCorrect(bi,Top-k)
function return 1 if Top-k components contain the target

component to the input bug bi; and return 0 otherwise. MRR

measures a recommender system’s performance based on the

graded relevance of the recommended items and their positions

in the candidate set, i.e., 1/|B|∑|B|
i=1 1/ranki where B is the

set of test bugs and ranki refers to the rank position of the

correct component for the i-th bug.

3) Baselines: We compare our approach with the following

baselines: the first baseline is BugBug [2], which has been

developed and used by Mozilla for bug management. In

particular, we use the component classifier within BugBug

tool for this bug-component triaging task. It transforms bug-

component triaging into the multi-classification task by using

the logistic regression model with features collected from bug

summary, description, keywords/flags. The second one is LR-

BKG. Details are shown in Section II.

4) Experimental Settings: DEEPTRIAG is implemented by

the PyTorch framework. We use the “codebert-base” model for

CodeBERT-Classifier and “codet5-base” model for CodeT5-

Generator. These two tasks are trained individually. During

the fine-tuning procedure, we optimize the parameters by using

AdamW [17], with the learning rate for CodeBERT Classifier

2e-5 and for CodeT5-Generator 5e-5. Both of the training

procedure last 10 epochs. For ensembling settings, ω is set to

5. All model training and experiments were done on a GPU

machine (one GeForce RTX 3080 GPU with 10GB memory,

10 cores 3.7GHZ CPU, 32GB memory).
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TABLE III: Component-Level Top-1 Accuracy Comparison

Top-1 Accuracy DEEPTRIAG > LR-BKG DEEPTRIAG = LR-BKG DEEPTRIAG < LR-BKG

# P::C (Mozilla) 165 11 10

# P::C (Eclipse) 37 8 1

B. Bug Triaging Effectiveness Evaluation (RQ1)

In this research question, we evaluate the overall effec-

tiveness of our approach compared with the above baselines.

The experimental results regarding Top-k accuracy and MRR

are shown in Table II. Note that BugBug is designed for

Mozilla, which is difficult to migrate to other projects. There-

fore, we only get the experimental results of BugBug on

Mozilla. Besides, the MRR of BugBug can not be estimated

because some prediction results of BugBug are out of the

components in the dataset. From the table, it is obvious that
our approach, DEEPTRIAG, is substantially better than the
above baselines regarding all Top-k accuracies and MRR
on both dataset, which demonstrates the effectiveness and

generalization of our approach for this bug-component triaging

task.

BugBug has the worst performance on Mozilla dataset.

As for Top-1 accuracy, BugBug only achieved 37.8% for

tossed bugs and 46.8% for non-tossed bugs and overall

44.5%, much lower than LR-BKG and our approach. Similar

to the CodeBERT-Classifier of DEEPTRIAG, BugBug also

transforms bug-component triaging into multi-classification

task. The major difference is BugBug takes the one-hot

representation as features from bug summary, description and

keywords/flags, while DEEPTRIAG automatically learns the

deep features from the bug report. The one-hot features utilized

by BugBug can only capture the lexical-level information,

which is unable to learn the semantic links between bugs and

components. This may explain its poor performance on the

bug-component triaging task.

Compared with LR-BKG, our approach improves Top-1

accuracy from 46.9% to 55.4% for tossed bugs, from 59.3%

to 72.7% for non-tossed bugs and overall from 56.2% to

68.3% on Mozilla dataset. On Eclipse dataset, Top-1 ac-

curacy is improved from 48.6% to 57.1% for tossed bugs,

from 51.7% to 65.2% for non-tossed bugs and overall from

51.3% to 64.1%. We attribute this to the following reasons:

Firstly, instead of using manual feature engineering, we use

the pre-trained models to extract deep features from bug

reports automatically during training. The generated vector

representation can effectively capture the semantic information

and implicit connections between bugs and components in

a finer granularity. Secondly, in addition to bug summary,

we introduce bug description for obtaining more information

to distinguish confusing components further. We thoroughly

discuss the effect of bug description on improving Top-1

accuracy in Section V-C.

We also conduct the component-level evaluation of DEEP-

TRIAG and LR-BKG in terms of Top-1 accuracy, shown in

Table III. DEEPTRIAG achieves the higher Top-1 accuracy

than LR-BKG for 165 out of 186 components indicating

Fig. 4: Top-1 Accuracy Distribution of Components (DEEP-

TRIAG vs LR-BKG on Mozilla)
Blue boxplot is for components with 500+ bugs (Group 3);

Red boxplot is for components with 250-500 bugs (Group 2);
Green boxplot is for components with 0-250 bugs (Group 1);
Notes: DEEPTRIAG corresponds to the boxplots with slash;

that the performance of DEEPTRIAG is better than LR-BKG

on most components (88.7%). For Eclipse, DEEPTRIAG per-

forms better on 37 out of 46 components (80.4%) than LR-

BKG. Only one component has lower Top-1 accuracy. The

superior performance of DEEPTRIAG on both bug-level and

component-level further justifies the advantage of our model.

As discussed in Section II, LR-BKG obtains a relatively

poor Top-1 accuracy. We identify two major situations that LR-

BKG fails to handle properly, the confusing component (cf.

Section II-A1) and the few-shot component (cf. Section II-A2).

Regarding the limitations of LR-BKG, we investigate whether

our model, DEEPTRIAG, can better handle the confusing com-

ponent and few-shot component challenges. Take the Mozilla

dataset as an example. The details are as follows:

Confusing component. Failing to distinguish confusing com-

ponents effectively is one of the main reasons for the sub-

optimal Top-1 accuracy of LR-BKG. Hence, we analyze the

experimental results to find out whether DEEPTRIAG can

help to alleviate this situation. Considering 5,061 tossed bugs,

there are 1,265 bugs mistossed into confusing components

by LR-BKG. With the help of DEEPTRIAG, 323 out of

1,265 mistossed bugs can be tossed into correct components.

As for 14,656 non-tossed bugs, LR-BKG mistosses 2,043

bugs into confusing components. DEEPTRIAG assigns 975

out of 2,043 bugs into the correct ones. Due to the valuable

information within the bug description and the deep features

effectively extracted by the pre-trained models, DEEPTRIAG

can effectively reduce the number of failure cases on confusing

components when performing the bug-component triaging.

However, the confusing component distinction is still an open

research question need to be further investigated, since some

bugs still remain in the confusing components.

Few shot component. To verify whether DEEPTRIAG can

better handle the few shot components than LR-BKG, we re-

calculate the Top-1 accuracy distribution of the three different

component groups (referred to Table I), as shown in Figure 4.

For a comparison purpose, we put the results from LR-

BKG (without slash) and DEEPTRIAG (with flash) together.

From Figure 4, we can observe that DEEPTRIAG effectively

improves bug triaging on few shot components on Mozilla

dataset. For Group 1, the median of Top-1 accuracy increases

from 41.9% to 62.5%, an obvious improvement compared

with LR-BKG. The median of Top-1 accuracy for Group
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(a) Mozilla

Tool Category Top-1 Top-3 Top-5 Top-10 MRR

LR-BKG Tossed 0.469 0.701 0.772 0.848 0.608

Non-Tossed 0.593 0.779 0.836 0.892 0.702

Overall 0.562 0.759 0.820 0.881 0.678

LR-BKG+BD Tossed 0.440 0.680 0.757 0.839 0.584

Non-Tossed 0.542 0.753 0.814 0.880 0.665

Overall 0.516 0.734 0.799 0.869 0.644

LRBKG-BPE+BD Tossed 0.395 0.622 0.695 0.787 0.536

Non-Tossed 0.497 0.688 0.749 0.818 0.613

Overall 0.471 0.671 0.735 0.810 0.593

DEEPTRIAG-BD Tossed 0.529 0.723 0.782 0.845 0.645

Non-Tossed 0.659 0.805 0.844 0.890 0.745

Overall 0.626 0.784 0.828 0.879 0.719

DEEPTRIAG Tossed 0.554 0.764 0.819 0.881 0.675

Non-Tossed 0.727 0.857 0.890 0.930 0.802

Overall 0.683 0.833 0.872 0.917 0.769

(b) Eclipse

Tool Category Top-1 Top-3 Top-5 Top-10 MRR

LR-BKG Tossed 0.486 0.731 0.807 0.879 0.629

Non-Tossed 0.517 0.711 0.776 0.849 0.637

Overall 0.513 0.714 0.780 0.853 0.636

LR-BKG+BD Tossed 0.481 0.750 0.836 0.909 0.635

Non-Tossed 0.549 0.762 0.828 0.894 0.675

Overall 0.539 0.761 0.829 0.897 0.669

LRBKG-BPE+BD Tossed 0.435 0.722 0.808 0.890 0.599

Non-Tossed 0.507 0.719 0.789 0.869 0.636

Overall 0.497 0.720 0.792 0.872 0.631

DEEPTRIAG-BD Tossed 0.526 0.767 0.841 0.920 0.666

Non-Tossed 0.598 0.779 0.836 0.904 0.707

Overall 0.588 0.777 0.837 0.906 0.701

DEEPTRIAG Tossed 0.571 0.820 0.882 0.942 0.710

Non-Tossed 0.652 0.839 0.883 0.933 0.758

Overall 0.641 0.836 0.883 0.935 0.751

TABLE IV: Top-k Accuracy & MRR (+/- Bug Description)

2 rises from 50.7% to 65.0%. Moreover, DEEPTRIAG can

also improve the performance of components with more than

500 bugs in general. The median Top-1 accuracy improves

from 66.5% to 76.5%. The handcrafted features designed by

LR-BKG heavily rely on the number of similar bugs and

how similar these bugs to the given bug. The very limited

number of bugs within the few shot components makes the

bug-component features of LR-BKG less effective. Compared

with LR-BKG, for a given bug report, DEEPTRIAG learns the

deep features from the bug itself without resorting to other

similar bugs, which can explain the reason why DEEPTRIAG

can better handle the few shot components.

We conclude that our approach can significantly improve the
Top-1 accuracy over the state-of-the-art baseline by a large
margin, which shows the effectiveness of our approach to
assign bugs into the target components at the first position
directly and accurately. Moreover, DEEPTRIAG can better
handle the situation of confusing components and few shot
components compared with LR-BKG.

C. Bug Description Effectiveness (RQ2)

One advantage of DEEPTRIAG is to introduce bug descrip-

tion into bug-component triaging. To investigate the impact of

bug description on bug-component triaging, we conduct the

bug description analysis, as follows:

LR-BKG+BD. Since LR-BKG does not consider bug de-

scription as input, for a fair comparison, we further incorporate

bug description to LR-BKG. Specifically, we preprocess the

bug description using the same way as text preprocessing of

LR-BKG, namely using camel case to split words, converting

words into lowercase, then splitting paragraphs into sentences

by punctuations, tokenizing and stemming them by the NLTK.

The only difference from LR-BKG is that we filter out

tokens in bug description appearing less than 15 times to

remove noises to avoid the dimension explosion of one-hot

representation. After text preprocessing, we concatenate bug

summary and bug description as a whole as input instead of

inputting bug summary only.

LRBKG-BPE+BD Inspired by the Byte-Pair Encoding

(BPE) [18] that pre-trained models use, we evolve LR-BKG

with BPE instead of word-based tokenization to alleviate

the large vocabulary size issue. That is, we replace the text

preprocessing of LR-BKG with the BPE.

DEEPTRIAG-BD. DEEPTRIAG-BD drops bug description

from the input of DEEPTRIAG, i.e., only considering the bug

summary as input.

The experimental results are shown in Table IV. To mea-

sure the improvement achieved by adding bug description as

input for our approach, we compare the Top-1 accuracy of

DEEPTRIAG with DEEPTRIAG-BD. The experimental results

on Mozilla dataset are shown in Table IVa. For tossed bugs,

DEEPTRIAG increases the Top-1 accuracy from 52.9% to

55.4%. For non-tossed bugs, it improves from 65.9% to 72.7%.

Overall, it reaches 68.3% from 62.6%. As for experimental

results on Eclipse dataset in Table IVb, the Top-1 accuracy

increases from 52.6% to 57.1% for tossed bugs, from 59.8% to

65.2% for non-tossed bugs and from 58.8% to 64.1% overall.

From the results, it is clear that bug description does make

contributions to the performance of DEEPTRIAG for both

tossed and non-tossed bugs, which proves that bug description

indeed contains useful information for bug-component triag-

ing. Therefore, it is useful and necessary to introduce bug
description for further improving the performance of bug-
component triaging.

Referring to [1], LR-BKG only takes bug summary as input.

Considering that bug description is helpful for DEEPTRIAG,

we further investigate if bug description can boost the per-

formance of LR-BKG. However, as shown in Table IVa, on

Mozilla dataset, the Top-1 accuracy of LR-BKG does not rise

but falls from 46.9% to 44.0% and from 59.3% to 54.2%

for tossed and non-tossed bugs surprisingly. Overall, it drops

from 56.2% to 51.6%. On the contrary, the Top-1 accuracy of

LR-BKG increases from 51.3% to 53.9% overall on Eclipse

dataset (from 48.6% to 48.1% and from 51.7% to 54.9% for

tossed and non-tossed bugs) from Table IVb. To analyze the

performance of LR-BKG after adding bug descriptions, we

further investigate the characteristics of bug description as well

as how LR-BKG uses bug description in detail.

By analyzing bug description, we find that, even though

bug description contains detailed and valuable information

(preconditions, steps to reproduce, expected/actual result, etc.),

it also involves much noisy and useless information (e.g.,

various user free-form expressions). The valuable information

can be easily buried in a large amount of irrelevant data.
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For example, considering some LR-BKG’s manually designed

features calculated based on one-hot vector, the dimension

of the vector sharply increased from 20k (based on bug

summaries only) to 759k (after adding the bug descriptions)

on Mozilla dataset. It is worth mentioning that we filter tokens

from bug description appearing no more than 15 times to

remove the meaningless tokens. Then, the vector dimension

remains 31k. Even so, LR-BKG still cannot take advantage of

bug description information on Mozilla dataset. As a result,

the large amount of noise and irrelevant information makes the

feature vector of LR-BKG less effective, which is the reason

why the performance of LR-BKG+BD drops significantly on

Mozilla dataset.

Compared with Mozilla dataset, bug description on Eclipse

dataset contains fewer meaningless tokens, since the vector

dimension is increased from 20k to 229k when adding the

bug description, far less than 759k in Mozilla dataset. After

filtering tokens appearing no more than 15 times, it remains

26k. Thus, based on more valuable information mixed with

less meaningless tokens, the overall Top-1 accuracy increases

from 51.3% to 53.9%. But compared to DEEPTRIAG (64.1%),

LR-BKG+BD still fails to make full use of bug description.

Moreover, for the dimension explosion issue of LR-BKG

after adding the bug description, we try to optimize LR-

BKG+BD with BPE, namely LRBKG-BPE+BD. Tokenizing

bug summary and description by using BPE can effectively

reduce the vector dimension from 759k to 27k for Mozilla

and from 229k to 26k for Eclipse by setting the maxi-

mum vocabulary size to 30k. But the experimental results of

LRBKG-BPE+BD from Table IV show that it even has the

worse performance than LR-BKG+BD, which shows the BPE

tokenization algorithm is not suitable for traditional machine

learning approaches.

The performance of LR-BKG after adding bug description

indicates that, the hand-crafted features of LR-BKG are sen-

sitive to the data noise, and difficult to capture the valuable

information from a large amount of meaningless data. Com-

pared with LR-BKG, the deep features learned by DEEPTRIAG

are more robust and can extract useful information from bug

description automatically and effectively, which can further

boost the bug-component triaging performance.

Bug description contains valuable information for bug-
component triaging, but it is mixed with much irrelevant
noise, which is difficult for manual feature engineering
to extract useful information from it. DEEPTRIAG, which
uses the pre-trained models to extract deep features from
bug description automatically, can make full use of bug
description and effectively boost the performance of bug-
component triaging.

D. Ablation on DEEPTRIAG (RQ3)

DEEPTRIAG consists of CodeBERT-Classifier, CodeT5-

Generator and an ensemble algorithm. In this section, we

conduct an ablation study to evaluate the effectiveness of them.

The results of ablation study are shown in Table V.

(a) Mozilla

(b) Eclipse

Fig. 5: CodeBERT-Classifier VS CodeT5-Generator
X-axis represents components; Y-axis is the difference of Top-1
accuracy between CodeBERT-Classifier and CodeT5-Generator;

Red lines are CodeBERT-Classifier better than CodeT5-Generator;
Blue lines are on the contrary.

From Table V, the individual CodeBERT-Classifier or

CodeBERT-Generator can achieve much better performance

than BugBug and LR-BKG regarding all Top-1 accuracies and

MRR, which demonstrates the effectiveness of deep features

extracted from pre-trained models. Comparing CodeBERT-

Classifier with CodeT5-Generator, CodeT5-Generator has bet-

ter performance than CodeBERT-Classifier on Top-1 accuracy.

But, as k gradually increases, CodeBERT-Classifier, more

often than not, exhibits higher Top-k accuracy than CodeT5-

Generator. Instead of treating components as numeric labels

like CodeBERT-Classifier, CodeT5-Generator takes compo-

nents as input during training. Thus, CodeT5-Generator can

learn more information from components which is useful

for the bug-component triaging. However, the disadvantage

of CodeT5-Generator is that it can generate outputs not

corresponding to any of possible components. According to

our observation, we found that given a bug report, the first

generated output is always meaningful while the following

generated ones sometimes are out of the range of possible

components. Therefore, CodeT5-Generator has an advantage

in Top-k accuracy when k is small. CodeBERT-Classifier

performs better as k increasing.

Moreover, we discover that CodeBERT-Classifier and

CodeT5-Generator make their own contributions to different

components. In other words, they can complement and en-

hance the performance of each other on component level,

as shown in Figure 5 intuitively. As for Mozilla dataset

(Figure 5a), only 29 components out of 186 components have

the same performance for CodeBERT-Classifier and CodeT5-

Generator. CodeBERT-Classifier performs better than CodeT5-

Generator on 69 components, while performing weaker than

CodeT5-Generator on 88 components. From Figure 5b, on

Eclipse dataset, CodeBERT-Classifier has the same perfor-
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(a) Mozilla

Tool Category Top-1 Top-3 Top-5 Top-10 MRR

CodeBERT Tossed 0.535 0.719 0.771 0.853 0.648

Classifier Non-Tossed 0.700 0.833 0.866 0.902 0.776

Overall 0.658 0.804 0.842 0.890 0.743

CodeT5 Tossed 0.546 0.730 0.775 0.818 0.650

Generator Non-Tossed 0.707 0.833 0.862 0.889 0.777

Overall 0.666 0.807 0.840 0.871 0.744

DEEPTRIAG Tossed 0.554 0.764 0.819 0.881 0.675

Non-Tossed 0.727 0.857 0.890 0.930 0.802

Overall 0.683 0.833 0.872 0.917 0.769

(b) Eclipse

Tool Category Top-1 Top-3 Top-5 Top-10 MRR

CodeBERT Tossed 0.550 0.796 0.862 0.925 0.689

Classifier Non-Tossed 0.635 0.818 0.866 0.920 0.741

Overall 0.623 0.815 0.865 0.920 0.733

CodeT5 Tossed 0.577 0.727 0.762 0.816 0.667

Generator Non-Tossed 0.650 0.764 0.788 0.828 0.721

Overall 0.639 0.758 0.784 0.827 0.713

DEEPTRIAG Tossed 0.571 0.820 0.882 0.942 0.710

Non-Tossed 0.652 0.839 0.883 0.933 0.758

Overall 0.641 0.836 0.883 0.935 0.751

TABLE V: Ablation Study Evaluation

mance as CodeT5-Generator on 7 components, worse than

CodeT5-Generator on 25 components and better than CodeT5-

Generator on 14 components. This phenomenon indicates that

CodeBERT-Classifier and CodeT5-Generator have their own

advantage on different components. We attribute it to the

differences in model architectures and learning objectives of

these two modules.

Based on above findings, we combine CodeBERT-Classifier

and CodeT5-Generator for making full use of their indi-

vidual advantages on Top-k accuracy and their component-

level differences. From Table V, it is obvious that our ap-

proach, DEEPTRIAG, outperforms CodeBERT-Classifier and

CodeT5-Generator individually. The superior performance of

DEEPTRIAG indicates that CodeBERT-Classifier and CodeT5-

Generator can complement each other for better performance

of bug-component triaging, which verifies the effectiveness

and necessity of employing the ensemble strategy.

Each individual module in DEEPTRIAG is effective and
helpful for bug-component triaging. Moreover, CodeBERT-
Classifier and CodeT5-Generator greatly complement and
enhance with each other on Top-k accuracy and component-
level performance.

VI. THREATS TO VALIDITY

Threats to internal validity relate to the wrong implemen-

tation of our code. To reduce errors in our code, we have

double checked and fully tested our code, still there could

be errors that we did not notice. To reduce the impact of

undetected errors in our code, we also publish our source

code and dataset to enable other researchers for replicating

and extending our work.

Threats to external validity are about the generalization of

our approach. We evaluate our approach on bug reports from

Mozilla and Eclipse. Both of the projects build on the bugzilla,

a general-purpose bug management platform, which might

reduce the diversity of our dataset. However, we use the dataset

from Mozilla involving six products and 186 components

and the dataset from Eclipse covering six products and 46

components, which mentions diverse frontend and backend

features and alleviates the threats to external validity to a

certain extent. We plan to evaluate our approach on the dataset

from other bug tracking system, such as GitHub in the future.

Threats to construct validity relate to the suitability of our

evaluation metrics. The metrics we use contain Top-k accuracy

and Mean Reciprocal Rank (MRR), which are widely used for

evaluating the performance of recommendation [19].

VII. RELATED WORK

To reduce the burden of bug management and facilitate

the process of bug fixing, an amount of software engineering

research has been invested into automatic bug report manage-

ment techniques, such as bug localization [20], [21], duplicate

bug detection [22], [23], bug field assignment [24], [25], etc.

Bug field assignment includes many aspects, e.g. the severity

[26]–[29] and priority [30]–[32] labels of bug reports, bug

triaging [24], [25], [33], [34]. Among them, bug triaging

among components is the most relevant research to our work.

Bug triaging contains two aspects, namely assigning bugs

among assignees and assigning bugs among components. Most

work currently focuses on bug-assignee triaging for assigning

bugs to appropriate experts. Anvik et al. [33] used the SVM

(Support Vector Machine) to assign the bug to the right bug

fixer. Jeong et al. [34] constructed a probability bug tossing

graph based on developer’s tossing relationships to improve

the performance of bug fixer assignment. Bhattacharya et

al. [35], [36] extended Jeong’s work by adding multi-feature to

the bug tossing graph to improve the accuracy of bug assign-

ments among developers. Xia et al. [37] proposed a model,

named DevRec, to automatically recommend developers for

bug resolution from bug report based analysis and developer

based analysis. Bader et al. [38] proposed a learning to rank

approach that ranks the top developers for a given bug report.

Compared with bug fixer assignment, the research focused

on the task of bug-component triaging is limited. Soma-

sundaram et al. [24] used the topic model to predict bug-

component for a given bug. Sureka [25] performed the bug-

component prediction by the Naive Bayes classifier with

TFIDF features and a dynamic language model classifier.

BugBug, which has already been used in the Mozilla’s devel-

opment, used the logistic regression model built in XGBoost

[39] to perform the bug-component triaging. Most recently,

Su et al. [1] proposed the state-of-the-art approach, named

LR-BKG, for the bug-component triaging. LR-BKG improves

the performance of bug-component triaging by learning from

mistakes with a bug tossing knowledge graph. Although LR-

BKG has significantly improved the performance of bug-

component triaging, we found that it cannot handle the confus-

ing component and few-shot component situation effectively.

To address the limitations of the LR-BKG, in this study, we

proposed a deep-learning based model, DEEPTRIAG, to assign
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the bug report to the right component with much higher Top-1

accuracy.

VIII. CONCLUSIONS AND FUTURE WORK

This paper investigates the limitations of the state-of-the-

art toolkit, LR-BKG for bug-component triaging. We find

the gap between characteristics of bug reports and manual

feature design of LR-BKG leading to the suboptimal perfor-

mance for bug assignment. Therefore, we propose a novel

approach, DEEPTRIAG by using large pre-trained models to

extract features from bug reports automatically to fill this

gap and then ensemble the results from CodeBERT-Classifier

and CodeT5-Generator to get the final outcome. Experimen-

tal results demonstrate the effectiveness of DEEPTRIAG on

bug-component triaging, especially for Top-1 accuracy rising

from 56.2% to 68.3% on Mozilla dataset and from 51.3%

to 64.1% on Eclipse dataset. In the future, we will further

distinguish confusing components by combining more kinds

of information besides text (e.g. video, screenshots, gif, etc.)

and strengthen few shot components by using siamese or even

triplet network.
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