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Software developers have heavily used online question-and-answer platforms to seek help to solve their tech-

nical problems. However, a major problem with these technical Q&A sites is “answer hungriness,” i.e., a large

number of questions remain unanswered or unresolved, and users have to wait for a long time or painstak-

ingly go through the provided answers with various levels of quality. To alleviate this time-consuming prob-

lem, we propose a novel DeepAns neural network–based approach to identify the most relevant answer

among a set of answer candidates. Our approach follows a three-stage process: question boosting, label es-

tablishment, and answer recommendation. Given a post, we first generate a clarifying question as a way

of question boosting. We automatically establish the positive, neutral+, neutral−, and negative training sam-

ples via label establishment. When it comes to answer recommendation, we sort answer candidates by the

matching scores calculated by our neural network–based model. To evaluate the performance of our pro-

posed model, we conducted a large-scale evaluation on four datasets, collected from the real-world technical

Q&A sites (i.e., Ask Ubuntu, Super User, Stack Overflow Python, and Stack Overflow Java). Our experimen-

tal results show that our approach significantly outperforms several state-of-the-art baselines in automatic

evaluation. We also conducted a user study with 50 solved/unanswered/unresolved questions. The user-study

results demonstrate that our approach is effective in solving the answer-hungry problem by recommending

the most relevant answers from historical archives.
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1 INTRODUCTION

The past decade has witnessed significant social and technical value of Question and Answer
(Q&A) platforms, such as Yahoo! Answers,1 Quora,2 and StackExchange.3 These Q&A websites
have become one of the most important user-generated-content (UGC) portals. For example, on
the Stack Exchange forums, more than 17M questions have been asked so far, and more than 11M
pages of these forums are visited daily by users. To keep up with the fast-paced software devel-
opment process, the technical Q&A platforms have been heavily used by software developers as a
popular way to seek information and support via the internet.

StackExchange is a network of online question-and-answer websites, where each website fo-
cuses on a specific topic, such as academia, Ubuntu operating system, LaTex, and so on. There are
a lot of technical Q&A sites that are heavily used by developers, such as Stack Overflow (with a
focus on programming-related questions), Ask Ubuntu (with a focus on Ubuntu operating system),
Super User (with a focus on computer software and hardware), and Server Fault (with a focus on
servers and networks). These Q&A websites allow users to post questions/answers and search for
relevant questions and answers. Moreover, if a post is not clear/informative, users routinely pro-
vide useful comments to improve the post. Figure 1 shows an example of an initial post and its
associated question comment in Ask Ubuntu Q&A site. By providing the question comment to the
original post, it can assist potential helpers to write high-quality answers, since the question is
more informative.

In spite of their success and active user participation, the phenomenon of being “answer-hungry”
is still one of the biggest issues within these Q&A platforms. This concept means that a very large
number of questions posted remain unanswered and/or unresolved. According to our empirical
study in different technical Q&A sites, Ask Ubuntu,4 Super User,5 and Stack Overflow,6 we found
that (1) developers often have to wait a long time, spanning from days to even many weeks, before
getting the first answer to their questions. Moreover, around 20% of the questions in Ask Ubuntu
and Super User do not receive any answer at all and leave the askers unsatisfied; and (2) even with
provided answers, about 44% questions in Ask Ubuntu and 39% questions in Super User are still
unresolved, i.e., the question asker does not mark any answer as the accepted solution to their
post. In such a case, information seekers have to painstakingly go through the provided answers
of various quality with no certainty that a valid answer has been provided.

In this work, we aim to address this answer-hungry phenomenon by recommending the most
relevant answer or the best answer for an unanswered or unresolved question by searching from
historical QA pairs. We refer to this problem as relevant answer recommendation. We propose a
deep learning–based approach we name DeepAns, which consists of three stages: question boost-
ing, label establishment, and answer recommendation. Given a post, our first step is to generate
useful clarifying questions via a trained sequence-to-sequence model. The clarifying question is
then appended to the original post as a way of question boosting, which can help eliminate the
isolation between question and answers. Then, in the label establishment phase, for each enriched
question, we pair it with its corresponding answers and automatically label the QA pair as pos-
itive, neutral+, neutral−, and negative samples by leveraging four heuristic rules. In the answer
recommendation phase, given a question q and an answer candidate ai , our goal is calculating the
matching degree of the 〈q, ai 〉 pair. We formulate this problem as a four-category classification

1https://answers.yahoo.com/.
2https://www.quora.com/.
3https://stackexchange.com.
4https://askubuntu.com/.
5https://superuser.com/.
6https://stackoverflow.com/.
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Fig. 1. Example Post on Askubuntu.

problem (i.e., a question-and-answer pair can be positive, neutral+, neutral−, or negative related).
We propose a weakly supervised neural network that can be trained with the aforementioned four
kinds of training samples.

The key usage scenarios of DeepAns are as follows: (1) for unresolved questions that do not
have an asker-accepted answer, developers can use DeepAns to recommend the best answers; and
(2) for unanswered questions, developers can use DeepAns to get the most relevant answers by
mining answers to other related questions.

To evaluate the performance of our proposed approach, we conducted comprehensive experi-
ments with four datasets collected from the technical Q&A sites Ask Ubuntu, Super User, and Stack
Overflow, respectively. The large-scale automatic evaluation results suggest that our model outper-
forms a collection of state-of-the-art baselines by a large margin. For human evaluation, we asked
five domain experts for their feedback on our generated clarifying questions and answers. Our
user-study results further demonstrate the effectiveness and superiority of our approach in solving
unanswered/unresolved questions. In summary, this article makes the following contributions:

• Previous studies neglect the value of interactions between the question asker and the po-
tential helper. We argue that a clarifying question between the question and answers is
an important aspect of judging the relevance and usefulness of the QA pair. Therefore, we
train a sequence-to-sequence model to generate useful clarifying questions for a given post,
which can fill the lexical gap between the questions and answers. To the best of our knowl-
edge, this is the first successful application of generating clarifying questions for technical
Q&A sites.

• We present a novel method to constructing positive, neutral+, neutral−, and negative training
samples via four heuristic rules, which can greatly save the time-consuming and labor-
intensive labeling process.

• We develop a weakly supervised neural network model for the answer recommendation
task. For any question answer pairs, we fit the Q&A pair into our model to calculate the
matching score between them; the higher the matching score estimated by our model, the
better chance the answer will be selected as the best answer. In particular, the Q&A sites
can employ our approach as a preliminary step towards marking the potential solution for
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the unanswered/unresolved question. This can avoid unnecessary time spent by developers
to browse questions without an accepted solution.

• Both our quantitative evaluation and user study show that DeepAns can help developers
find relevant tehnical question answers more accurately, compared with state-of-the-art
baselines. We have released the source code of DeepAns and the dataset7 of our study to
help other researchers replicate and extend our study.

The rest of the article is organized as follows: Section 2 presents our empirical study of answer-
hungry problem in technical Q&A sites. Section 3 presents the details of our approach to identifying
the most relevant answers. Section 4 presents the experimental set up and evaluation metrics.
Section 5 presents the results of our approach on automatic evaluation. Section 6 presents the
results of our approach on human evaluation. Section 7 discusses the strength of our approach
and the threats to validity in our study. Section 8 presents key related work and techniques of this
work. Section 9 concludes the article with possible future work.

2 MOTIVATION

2.1 Answer-hungry Q&A Site Phenomenon

Despite of—or perhaps even because of—the success of technical Q&A sites, the answer-hungry
problem still widely exists in these online forums. We wanted to find out the degree of the problem
for technical Q&A sites. To do this, we quantitatively analyzed the prevalence of this answer-
hungry issue in real-world technical Q&A sites (i.e., Ask Ubuntu, Super User, and Stack Overflow).
Since it is too expensive to run the empirical study on all the Stack Overflow dataset, we only
focus on Python- and Java-related programming language questions in Stack Overflow for our
experiment, which we refer to SO (Python) and SO (Java), respectively, in this study. The following
two metrics are used in our experiment: (1) the proportion of questions that remain unanswered
and/or unresolved within these technical Q&A sites, and (2) the time interval between the posting
of one answer and its corresponding question.

To investigate the proportion of the unanswered and unresolved questions, we first counted
the number of questions that have received at least one answer and refer to these questions as
Answered Questions. Questions not receiving any answers are referred to as Unanswered Questions.
For those Answered Questions, we further divided them into two groups of Resolved Questions and
Unresolved Questions based on whether any answer within the question thread has been marked
or not as the accepted answer by the asker. Then, we empirically studied the average waiting time
measured from the time of question creation to answer posting. We also calculated the average
time interval for accepting an answer, which is the time difference between the time a question
is created and the time an answer post is accepted. Table 1 presents the statistical results of our
collected data.8 From the table, we have the following observations:

(1) A large proportion of questions do not receive any answers in these technical Q&A sites.
Consider Ask Ubuntu and Super User as examples—around 22% questions in Ask Ubuntu
and 19% questions in Super User do not get any response, since the time questions have
been created, leaving the askers unsatisfied.

(2) A large amount of questions are still unresolved. For instance, 31.3% questions in SO
(Python) and 35.4% questions in SO(Java) remain to be unresolved. This phenomenon
is probably caused by the following reasons: (a) no good answer was provided within

7https://github.com/beyondacm/DeepAns.
8For duplicated questions, we only keep the master ones, and we remove the others.
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Table 1. Answer-hungry Statistics

Ask Ubuntu

# Questions 315,924
# Unanswered Questions 69,528
# Resolved Questions 106,301
# Unresolved Questions 140,095
Avg Waiting Time 135.75 (days)
Avg Accepting Time 18.63 (days)

Super User

# Questions 380,940
# Unanswered Questions 73,584
# Resolved Questions 160,200
# Unresolved Questions 147,156
Avg Waiting Time 173.03 (days)
Avg Accepting Time 25.69 (days)

SO (Python)

# Questions 1,236,748
# Unanswered Questions 175,859
# Resolved Questions 674,360
# Unresolved Questions 386,529
Avg Waiting Time 103.97 (days)
Avg Accepting Time 7.78 (days)

SO (Java)

# Questions 1,581,814
# Unanswered Questions 213,963
# Resolved Questions 808,040
# Unresolved Questions 559,811
Avg Waiting Time 100.52 (days)
Avg Accepting Time 8.52 (days)

the current question thread, (b) even provided with good answers, it is common for the
less-experienced users to forget marking a potential answer as a solution.

(3) Developers usually have to wait a long time before getting answers to their questions. It
takes on average more than 135 days and 173 days to receive an answer in Ask Ubuntu
and Super User sites, respectively. The average time to accept an answer is much shorter,
which are 18 and 25 days, respectively. This further justifies our assumption that users
may often forget to mark their accepted answers.

(4) The number of questions posted on Stack Overflow far outnumber the questions posted
on Ask Ubuntu and Super User. At the same time, the ratio of the resolved questions
in Stack Overflow are also higher than the other two technical Q&A sites. For instance,
54.5% questions in SO (Python) were resolved while the same number in Ask Ubuntu was
33.6%. This reflects that, compared with other technical Q&A sites, Stack Overflow is more
popular and more frequently used by the information seekers.

In summary, the answer-hungry phenomenon widely exists and has been one of the biggest
challenges in technical Q&A forums.

2.2 Clarifying Questions in Technical Q&A Sites

Different from general Q&A sites, the comments within technical Q&A sites often include clar-
ifying questions. In technical Q&A sites, the experts often ask clarifying questions to comments

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 1, Article 11. Pub. date: December 2020.
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Table 2. Clarifying Questions Statistics

Ask Ubuntu

# Question Comments 188,920
# Clarifying Questions 72,359

Pr(A|CQ) 18.1%

Pr
(
A|CQ

)
14.8%

Super User

# Question Comments 237,668
# Clarifying Questions 96,296

Pr(A|CQ) 16.2%

Pr
(
A|CQ

)
12.3%

SO (Python)

# Questions Comments 766,490
# Clarifying Questions 329,768

Pr(A|CQ) 8.4%

Pr
(
A|CQ

)
7.8%

SO (Java)

# Questions Comments 1,032,176
# Clarifying Questions 467,772

Pr(A|CQ) 8.1%

Pr
(
A|CQ

)
7.7%

of a post so they can understand the problem and help the one posting the question. We define
a “clarifying question” as a question in comments of a post that inquires of missing information
for the given post. We wanted to empirically study the proportion and usefulness of clarifying
questions in technical Q&A sites.

To investigate the proportion of the clarifying questions, we counted the number of comments
on the questions as well as the number of comments containing clarifying questions. We extracted
the clarifying questions as follows: We first constructed a Question Comment Set by extracting
all the comments on the questions, removing the comments on the answers. Following that, for
each comment in the Question Comment Set, we adopted sentence tokenization method from the
NLTK toolkit [6] to break comments into multiple sentences. We then used the word tokenization
method to separate each sentence into a list of tokens and symbols. If the extracted tokens contain
the question mark token “?,” we truncated the sentence till its question mark “?” to retrieve the
question part of the comment as the clarifying question. If there are multiple clarification questions
within the same comment, we kept them as separate clarifying questions. After that, we removed
clarifying questions that are more than 20 words. The results are summarized in Table 2.

A clarifying question is useful if it helps in getting an answer to a specific question and/or
reducing the waiting time. Imagine a scenario that Bob is a software developer who is seeking
help in technical Q&A sites; he posts a question on these technical Q&A forums but the question
remains unanswered for some time. Following this, a clarifying question gets asked on the post and
then Bob gets an answer. Such a user scenario can help to demonstrate the usefulness of clarifying
questions. We estimated the usefulness by calculating the probability of a post getting answered
with and without a clarifying question. The data were collected using the following steps:

(1) For a given question post, we removed it if the creator of the post responded to his or her
own questions. There are around 10% of the posts being answered by the original question
author in these CQA forums. For example, 39,811 and 48,503 questions were removed from
the Ask Ubuntu and Super User, while 110,767 and 154,065 questions were removed from
the SO (Python) and SO (Java) datasets, respectively.
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(2) Considering a question may not have enough time to receive answers if it is posted near
the creation date of the data dump, we also removed the unanswered post if it is close
(within seven days) to the release date of the data dump. Since the data dump we used
was created on September 5, 2019, we removed the unanswered questions posted after
August 25, 2019. This results in 521 and 982 unanswered questions removed from Ask
Ubuntu and Super User, while 2,093 and 1,549 unanswered questions were removed from
the SO (Python) and SO (Java) datasets, respectively.

(3) For a given clarifying question, we removed it from the candidate list if the clarifying
question is posted by the same user of the original question. For such a case, 8% of the
clarifying questions were deleted from Ask Ubuntu and Super User, and 12% of the clari-
fying questions were deleted from SO (Python) and SO (Java), respectively.

(4) Considering a clarification question is helpful only if it was posted before the first answer
provided on the thread, we checked the creation date of the clarification question as well
as the first answer on the thread and deleted all the clarification questions posted after the
first answers. For example, 12,451 and 18,430 clarification questions were deleted from Ask
Ubuntu and Super User, while 54,009 and 82,700 clarification questions were deleted from
SO (Python) and SO(Java) datasets, respectively.

Finally, we calculated the probabilities of a question receiving answers with and without a clar-
ifying question. The probabilities are defined as follows:

P (A|CQ) =
count (A|CQ)

count (A|CQ) + count
(
A|CQ

) , (1)

P
(
A|CQ

)
=

count
(
A|CQ

)

count
(
A|CQ

)
+ count

(
A|CQ

) , (2)

where (A|CQ) and
(
A|CQ

)
stand for answered posts with and without a clarifying question, re-

spectively. Similarly,
(
A|CQ

)
and
(
A|CQ

)
stand for unanswered posts with and without a clari-

fying question, respectively. The results are summarized in Table 2. From the table, we have the
following observations:

(1) In technical Q&A sites, a large number of comments on questions include clarifying ques-
tions. Since our method to extract clarifying questions is rather intuitive, we further sam-
pled 100 clarifying questions from our dataset to do a manual analysis. By manually check-
ing these clarifying questions, we found that 91% of the clarifying questions are positive
clarifying questions. The positive clarifying questions often ask more information about
the original post, such as “which version of ubuntu are you using?,” and/or provide po-
tential solutions to the original post, such as “do you use gnome or kde?” Only 9% of the
clarifying questions are negative clarifying questions. The negative clarifying questions
are often noisy and/or do not appear to provide any useful information for the original
post, such as “did you resolve this?” These results show that a large proportion of clarify-
ing questions are meaningful and informative.

(2) The likelihood of a post getting an answer with a clarifying question is higher than the
likelihood of a post getting an answer without a clarifying question. For example, in Ask
Ubuntu, without a clarifying question, the probability of a question post to receive answers
dropped from 18.1% to 14.8%. This further justifies our assumption that the clarifying
questions are helpful in improving the quality of the original post, hence increasing the
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chance of a question post receiving answers. This is why we employ clarifying questions
to boost the original question post in our study.

In summary, clarifying questions appear frequently in technical Q&A sites and can help in im-
proving the original question post and increasing the likelihood of questions to receive answers.

In this article, we aim to invent a new model to not only help developers identify the best answers
from a set of candidate answers when they perform Q&A search activities online, but also recom-
mend the most relevant answers (given to other questions) when they initially post a question on-
line. Mathematically, let q be the unanswered or unresolved question, let (a1,a2, . . . ,aN ) be a set
of answer candidates, our task is defined as finding the most relevant answer a∗i (i = 1, 2, 3, . . .N ),
such that:

a∗ = arдmaxai
P (Accept|〈q,ai 〉). (3)

P (Accept|〈q,ai 〉) corresponds to the probability ai to be accepted given a QA pair 〈q,ai 〉.

3 OUR APPROACH

We present our approach named DeepAns, which ranks candidate answers from a relevant an-
swer pool and recommends the most relevant answer to developers. In general, our model fol-
lows a three-stage process: Question Boosting, Label Establishment, and Answer Recommendation.
Particularly, in the question boosting phase, DeepAns uses an attentional sequence-to-sequence
recurrent neural network [46] to generate possible clarifying questions for a given post. These
generated questions are appended to the original post as a way of question boosting. Then Deep-
Ans automatically constructs positive, neutral+, neutral−, and negative training samples for each
question-and-answer pair via four heuristic rules. In the answer recommendation phase, Deep-
Ans trains another convolutional neural network to calculate the matching score between a given
question and a candidate answer; the higher a similarity score is estimated, the more probable the
answer will be selected as the best answer.

The underlying principle of applying the recurrent networks for the question boosting task
is that compared with CNN neural networks, RNN architectures are dedicated sequence models,
and this family of architectures has gained tremendous popularity to prominent applications, e.g.,
machine translation [5, 46]. For the answer recommendation task, we select the convolutional net-
works. Theoretically, we could also employ the recurrent networks for answer recommendation.
However, due to the fact that computing score for each answer in the answer candidate pool is
time-consuming, CNN architecture has better performance, lower perplexity, and, more impor-
tantly, it runs much faster [12, 32] than RNN architecture for text encoding tasks, i.e., we can
process all timesteps in parallel via convolutional networks in both training and testing processes.

3.1 Question Boosting

The task of question boosting is to automatically generate clarifying questions from the title of
an initial post. This can be formulated as a sequence-to-sequence learning problem. Given Q is a
sequence of words within the question title of an initial post, our target is to generate a useful clar-
ifying question CQ, which is relevant, syntactically and semantically correct. To be more specific,
the goal is to train a model θ using 〈q, cq〉 pairs such that the probability Pθ (CQ|Q) is maximized
over the given training dataset. Mathematically, this query boosting task is defined as finding y,
such that:

y = arдmaxCQPθ (CQ|Q). (4)

Pθ (CQ|Q) can be seen as the conditional log-likelihood of the clarification question CQ given the
input post Q. The encoder-decoder architecture has been used in addressing such a problem. We
demonstrate an example of the question boosting process in Figure 2. The original post title “error

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 1, Article 11. Pub. date: December 2020.
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Fig. 2. Question boosting process.

loading update manager?” is fed into the encoder, and the clarifying question “do you change
server location?” is the decoder target output.

3.1.1 Encoder. The sequence of words within a post title is fed sequentially into the encoder,
which generates a sequence of hidden states. Our encoder is a two-layer bidirectional LSTM
network,

−−→
fwt =

−−−−−→
LSTM2

(
xt ,
−−−→
ht−1

)
,

←−−
bwt =

←−−−−−
LSTM2

(
xt ,
←−−−
ht−1

)
,

where xt is the given input word token at timestep t , and
−→
ht and

←−
ht are the hidden states at timestep

t for the forward pass and backward pass, respectively. The hidden states (from the forward and

backward pass) of the last layer of the encoder are concatenated to form a state s as s = [
−−→
fwt ;
←−−
bwt ].

3.1.2 Decoder. Decoder is singe-layer LSTM network, initialized with the state s as s =

[
−−→
fwt ;
←−−
bwt ]. Let qwordt be the target word at timestamp t of the clarifying question. During train-

ing, at each timestep t the decoder takes as input the embedding vector yt−1 of the previous word
qwordt−1 and the previous state st−1, and concatenates them to produce the input of the LSTM
network. The output of the LSTM network is regarded as the decoder hidden state st , as follows:

st = LSTM1 (yt−1, st−1). (5)

The decoder produces one symbol at a time and stops when the END symbol is emitted. The only
change with the decoder at testing time is that it uses output from the previous word emitted by
the decoder in place of wordt−1(since there is no access to a ground truth then).

3.1.3 Attention Mechanism. To effectively align the target words with the source words, we
model the attention [5] distribution over words in the target sequence. We calculate the attention
(at

i ) over the ith input token as:

et
i = v

t tanh(Wehhi +Wshst + batt ), (6)

at
i = softmax(et

i ). (7)

Here vt , Wsh , and batt are model parameters to be learned, and hi is the concatenation of for-
ward and backward hidden states of source-code encoder. We use this attention at

i to generate the
context vector c∗t as the weighted sum of encoder hidden states:

c∗t =
∑

i=1, .., |x |
at

i hi . (8)

We further use the c∗t vector to obtain a probability distribution over the words in the vocabulary
as follows:

P = softmax(Wv [st , c
∗
t ] + bv ), (9)
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Fig. 3. Label establishing process.

where Wv and bv are model parameters. Thus, during decoding, the probability of a word is
P (qword ). During the training process for each word at each timestamp, the loss associated with
the generated question is:

Loss = − 1

T

T∑
t=0

loдP (qwordt ). (10)

Once the model is trained, we do inference using beam search [19] and append the generated
clarifying question to the original post title. The beam search is parameterized by the possible
paths number k . The inference process stops when the model generates the END token, which
stands for the end of the sentence.

3.2 Label Establishment

According to our empirical study results from Section 2, the answer-hungry phenomenon widely
exists in technical Q&A forums, i.e., only a small proportion of questions have a “resolved” answer,
while many others remain unanswered and/or unresolved. Due to the reason of professionality of
technical questions, only the experts with specific knowledge are qualified to evaluate the match-
ing degree between a question and an answer. Therefore, it is very hard to find such annotators
and/or the creation of training sets requires a substantial manual effort. To address such a problem,
we propose a novel scheme to automatically label each Q&A pair as positive, neutral+, neutral−, and
negative samples. Figure 3 shows an example of our labeling process. We propose four heuristic
rules to label the Q&A pairs:

• Positive samples: for a given question Qi , we pair it with its marked “best” answer (if it has
one) Ai1, and label this QA pair as Positive.

• Neutral+ samples: for a given question Qi , we pair it with its non-best answer (answers
within the same question thread, except the one marked as the best answer), and label this
QA pair as Neutral+.

• Neutral− samples: for a given questionQi , we randomly select one answerAj from questions
similar to it, then label this QA pair as Neutral−.

• Negative samples: for a given question Qi , we pair it with a randomly selected answer Ak

from non-similar questions and label this QA pair as Negative.

Since we are recommending answers from candidate answers of questions relevant to the query
question, if the retrieved questions are not relevant to the query question, it is unlikely we can
select the best answer from the answer candidates pool. We followed the question retrieval method
proposed by Xu et al. [50] to search for similar questions, which has been proven to be more
effective for this task of relevant question retrieval. We used the IDF-weighted word embedding to
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Fig. 4. Overall architecture of the answer recommendation model.

calculate the similarity score between the query and the question title. Thereafter, a set of similar
questions can be identified by selecting the top-k ranked questions.

After this label establishing process, we can gather large amounts of labeled examples, which
greatly saves the time-consuming and labor-intensive labeling process.

3.3 Answer Recommendation

After collecting large amounts of labeled training data via label establishment, we are able to train
the deep learning model based on the four kinds of training samples.

We present a weakly supervised neural network architecture for ranking QA pairs. Figure 4
demonstrates the workflow of our proposed model. The main building blocks of our architecture
are two convolutional neural networks [29, 32]. These two underlying sub-models work in parallel,
mapping questions and answers to their distributional vectors, respectively, which are then used
to calculate the final similarity score between them.

3.3.1 Sentence Matrix. The input to our model are 〈q ⊕ cq,a〉 pairs, where q and a stand for
the question and answer of a labeled QA pair, cq stands for the clarifying questions generated by
our question boosting model. The questions (including the original questions and clarifying ques-
tions) and answers are parallel sentences, where each sentence is treated as a sequence of words:
(w1, ...,ws ), where each word is drawn from a vocabulary V. Words are represented by distribu-
tional vectors w ∈ R1×d via looking up in a pre-trained word embedding matrix W ∈ Rd×|V | .

For each input 〈q ⊕ cq,a〉 pair, we build two sentence matrices Sq and Sa ∈ Rd×|s | for each ques-
tion and answer, respectively, where the ith column represents the word embedding of wi at cor-
responding position i in a sentence.

3.3.2 Convolutional Feature Maps. To learn to capture and compose features of individual
words in a given sentence from low-level word embeddings into higher-level semantic concepts,
we apply two identical convolutional neural network blocks to the input sentence matrices Sq and
Sa, respectively.

More formally, the convolution operation ∗ between an input sentence matrix Sq/a ∈ Rd×|s | and

a filter F ∈ Rd×m (called a filter of sizem) results in a vector c ∈ R |s |−m+1, where each component
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is computed as follows:

ci = (S ∗ F)i =
∑
k, j

(
S[:, i−m+1:i] ⊗ F

)
k j
. (11)

In the above equation, ⊗ is the element-wise multiplication and S[:, i−m+1:i] is a matrix slice of size
m along the columns. Note that the convolution filter is of the same dimensionality d as the input
sentence matrix. As shown in Figure 4, it slides along the column dimension of S producing a vector
c ∈ R |s |−m+1. Each component ci is the result of computing an element-wise product between a
column slice of S and the filter matrix F, which is then flattened and summed producing a single
value. Applying a set of filters (called a filter bank) F ∈ Rn×d×m to sequentially convolve with the

sentence matrix S will generate a convolutional feature map matrix C ∈ Rn×( |s |−m+1) .

3.3.3 Pooling Layer. Following that, we pass the output from the convolutional layer to the
pooling layer, whose goal is to aggregate the information and reduce the representation. We apply
a max pooling operation [11] over the convolutional feature map and take the maximum value
ĉ =max {ci} as the feature corresponding to a particular filter. The idea is to capture the most
important feature—one with the highest value—for each feature map.

3.3.4 Matching Score Layer. The output of the penultimate convolutional and pooling layersx is
passed to a series of fully connected layers followed by a softmax layer. It computes the probability
distribution over the four kinds of labels (positive, neutral+, neutral−, negative):

P (y = j |x) =
exT θ j

∑K
k=1 e

xT θk

, (12)

where θk is a weight vector of the kth class. x can be thought of as a final abstract representation
of the input QA pair obtained by a series of transformations from the input layer through a series
of convolutional and pooling operations.

For the final matching score, we want this score to be high if the input QA pair is positive and
neutral+, and to be low if it is negative and neutral−. Therefore, we define the calculation of the
similarity score as follows:

Score = ωpos × P (pos ) + ωneu+ × P
(
neu+

) − ωneu− × P
(
neu−

) − ωneд × P (neд). (13)

There are four weights, as shown in Equation (13). We initially set all the four weights to 1 at
the beginning. Then the optimal settings of these weights are carefully tuned on our validation
set (detailed in Section 5.3.1). We use the final matching score to measure the relevance between
a question and an answer.

3.4 DeepAns Algorithm

We divide our model into two components: offline training and online recommendation. The de-
tailed algorithms of DeepAns for offline training and online recommendation are presented in Al-
gorithm 1 and Algorithm 2, respectively. To be more specific, during the offline training, we use
the data from technical Q&A sites to train the question boosting model (lines 1–3) and answer
recommendation model (lines 4–20). When it comes to the online recommendation, for a given
user query, we first collect a pool of answer candidates via finding its similar questions (lines 1–8).
After that, we use the trained question boosting model to perform query expansion, then pair it
with each of the answer candidates and fit them into the trained answer recommendation model
to estimate their matching scores (lines 9–14).
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ALGORITHM 1: DeepAns Algorithm (Offline Training)

Input: Data dump of technical Q&A sites;

Output: 1.Question Boosting model; 2.Answer recommendation model;

1 Extract 〈q, cq〉 pairs from data dump;

2 Train 〈q, cq〉 pairs with attentional-based seq2seq model;

3 Save the model as Question Boosting model;

4 Extract 〈q,a〉 pairs from data dump;

5 for qi ,ai ∈ 〈q,a〉pairs do

6 if qi has accepted-answer then

7 if ai is accepted-answer then

8 Label 〈qi ,ai 〉 as Positive ;

9 end

10 else

11 Label 〈qi ,ai 〉 as Neutral+;

12 end

13 Select similar answer aj then Label 〈qi ,aj 〉 as Neutral−;

14 Select random answer ak then Label 〈qi ,ak 〉 as Neдative;

15 end

16 end

17 for qi ∈ labeled〈q,a〉pairs do

18 Generate cqi for qi using Question Boosting model;

19 Append cqi to qi to make labeled 〈qi ⊕ cqi ,ai 〉 pair;

20 end

21 Train labeled 〈q ⊕ cq,a〉 pairs with CNN-based classification model;

22 Save the model as Answer Recommendation model

4 AUTOMATIC EVALUATION EXPERIMENT SETUP

In this section, we first describe the datasets used throughout our experiments. We then discuss
the baselines we compare to our new DeepAns approach and our experimental settings. Last, we
explain the automatic evaluation process.

4.1 Data Preparation

We collected data from the official dump of StackExchange, a network of online question-and-
answer websites. The StackExchange data dump contains timestamped information about the
posts, comments, as well as the revision history made to the post. Each post comprises a short
question title, a detailed question body, corresponding answers, and multiple tags. For each post,
users can add clarifying questions to posts for further discussion. After receiving one or more an-
swers, the asker can select one answer that is most suitable for their question as the accepted/best
answer. We choose three different technical Q&A sites, i.e., Ask Ubuntu, Super User, and Stack
Overflow for our experiment. These three technical Q&A sites are commonly used by software
developers and each one focuses on a specific area. For instance, Ask Ubuntu and Super User fo-
cus on Ubuntu system questions and computer software/hardware questions, respectively, and
Stack Overflow is the most popular programming-related Q&A site that has been heavily used by
software developers via the internet. As with our previous empirical study, we only focus on the
Python- and Java-related questions in Stack Overflow for this study, referred to as SO (Python)
and SO (Java), respectively, in this study.
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Table 3. Number of Training/Validation/Testing Samples

Ask Ubuntu
# 〈q, cq〉 pairs 68,216 # 〈q,a〉 pairs 289,062
# Positive pairs 79,726 # Neutral+ pairs 49,884
# Neutral− pairs 79,726 # Negative pairs 79,726

Super User
# 〈q, cq〉 pairs 87,081 # 〈q,a〉 pairs 447,221
# Positive pairs 119,305 # Neutral+ pairs 89,306
# Neutral− pairs 119,305 # Negative pairs 119,305

SO (Python)
# 〈q, cq〉 pairs 311,127 # 〈q,a〉 pairs 2,372,232
# Positive pairs 610,948 # Neutral+ pairs 539,388
# Neutral− pairs 610,948 # Negative pairs 610,948

SO (Java)
# 〈q, cq〉 pairs 456,077 # 〈q,a〉 pairs 3,013,859
# Positive pairs 734,977 # Neutral+ pairs 808,928
# Neutral− pairs 734,977 # Negative pairs 734,977

ALGORITHM 2: DeepAns Algorithm (Online Recommendation)

Input: User search query quser ;

Output: A set of candidate answers with a matching score for each answer;

1 Generate cq for quser using Question Boosting model;

2 Search top-k similar questions for the given query quser ;

3 Add top-k questions to similar question set SQ ;

4 for qi ∈ SQ do

5 for aj ∈ qi do

6 Add answer to candidate answers set CA;

7 end

8 end

9 for ai ∈ CA do

10 Pair ai with expanded query to make a 〈quser ⊕ cq,ai 〉 pair;

11 Fit 〈quser ⊕ cq,ai 〉 pair to Answer Recommendation model;

12 Compute the final matching score si via Equation (13);

13 end

14 Rerank answers in CA via matching scores

The experimental dataset creation process is divided into three phases: extracting 〈q, cq〉 pairs,
constructing labeled 〈q,a〉 pairs, and constructing labeled 〈q ⊕ cq,a〉 pairs, where q stands for the
question, cq stands for the clarifying question, and a stands for the answer. Table 3 describes the
statistics of our collected datasets.

(1) Extract 〈q, cq〉 Pairs: For each post, we follow the methods described in Section 2.2 to
extract the clarifying questions. According to our manual analysis results, we summarize a
list of keywords associated with non-clarifying questions, such as “edit,” “related,” “vote,”
and so on. We preprocess our dataset to remove all instances that involve such keywords.
We also summarize a list of key phrases associated with the clarifying questions, such
as “do you,” “have you,” “how,” “which,” and so on. We retained the pairs that include
the above key phrases. After that, we pair the original post with its associated clarifying
question as 〈q, cq〉 pairs. We extract a total of 68,216 pairs in Ask Ubuntu and 87,081 pairs
in Super User. The number of 〈q, cq〉 pairs in Stack Overflow are much larger: We obtain

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 1, Article 11. Pub. date: December 2020.



Technical Q&A Site Answer Recommendation via Question Boosting 11:15

a total of 311,127 pairs for SO (Python) and 456,077 pairs for SO (Java). These collected
〈q, cq〉 pairs are used to train a sequence-to-sequence model for question boosting.

(2) Construct labeled 〈q, a〉 Pairs: To make the 〈q,a〉 pairs, we first extract the questions
that have explicitly marked accepted answers. Then for each question, we pair it with
the accept answer to make the positive sample, with non-accepted answer to make the
neutral+ sample, with an answer to a similar question to make the neutral− sample, and
with an answer to a randomly selected question to make the negative sample. We have to
clarify that some questions do not have the non-accepted answers; this is the reason why
the number of neutral+ samples is smaller than the number of other samples, such as Ask
Ubuntu, Super User, and SO (Python), while some other questions have more than one
non-accepted answer, which results in the number of neutral+ samples being bigger than
those of the rest, such as SO (Java). For the final dataset, we construct 289,062 and 447,221
〈q,a〉 labeled pairs for Ask Ubuntu and Super User, and 2,372,232 and 3,013,859 〈q,a〉 la-
beled pairs for SO (Python) and SO (Java), respectively. It is obvious that the number of
qa pairs in Stack Overflow far outnumber those of other technical Q&A sites. After the
label establishment process, we largely expand the labeled dataset for training. We ran-
domly sample 5,000 questions for validation and 5,000 questions for testing, respectively,
and kept the rest for training. It is worth mentioning that we first used the validation set
for model selection regarding the accuracy of QA pairs classification results, which is a
middle result of the answer selection target. After that, we reused the validation set for
tuning the four weights, as shown in Equation (13). The testing set was used only for test-
ing the final solution to confirm the actual predictive power of our model with optimal
parameter settings.

(3) Construct labeled 〈q ⊕ cq, a〉 Pairs: For each labeled 〈q,a〉 pair, we feed the original
question to the trained question boosting model to generate a clarifying question. After
that, we append the clarifying question to the original question to construct the 〈q ⊕ cq,a〉
pairs. The number of the 〈q ⊕ cq,a〉 pairs is identical with the number of 〈q,a〉 pairs.

4.2 Implementation Details

We implemented our DeepAns system in Python using the PyTorch framework. The main param-
eters of our deep learning model (tuned using the validation dataset) were as follows:

• Question Boosting: We train an attentional sequence-to-sequence model for this subtask.
Previous studies have shown that the deep sequence-to-sequence model can achieve state-
of-the-art performance on different tasks [17, 24, 27, 44]. We also used the parameter settings
from Reference [17] for training the 〈q, cq〉 pairs in this study. We use a two-layer bidirec-
tional LSTM for the encoder and a single-layer LSTM for the decoder. We set the number
of LSTM hidden states to be 256 in both encoder and decoder. Optimization is performed
using stochastic gradient descent (SGD) with a learning rate of 0.01. During decoding, we
perform beam search with a beam size of 10.

• Answer Recommendation: Kim et al. [32] have shown that convolutional neural networks
trained on top of pre-trained word vectors achieved promising performance for sentence-
level classification tasks. Hence, in our work, we also followed the experiment settings of
their studies. We initialize the word embeddings from our unsupervised corpus and set the
dimension of word embedding d to 100. The width m of the three convolution filters is set
to 3, 4, 5 and the number of convolution feature maps is set to 100. We use ReLu activation
function and a simple max-pooling function. The size of the hidden layer is equal to the
size of the join vector obtained after concatenating question and answer vectors from the
distributional models.
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To train both networks, we used stochastic gradient descent with shuffled mini-batches. The
batch size is set to 64. Both networks are trained for 50 epochs with early stopping, i.e., we stop
the training if no update to the best accuracy on the validation set has been made for the last five
epochs.

4.3 Baselines

To demonstrate the effectiveness of our proposed DeepAns, we compared it with several com-
parable systems. We briefly introduce these and how they are used for the task of predicting the
best answer among a set of answer candidates. DeepAns is built with the semantic features of
words in their dimensions; we used the average word vector of a sentence as features for train-
ing all of the baseline models for a fairer comparison. For each baseline method, their parameters
were carefully tuned, and the parameters with the best performance were used to report the final
comparison results with our DeepAns approach on the same datasets:

• Learning to Rank. The answer-prediction problem of our task is similar to the traditional
ranking task [2, 42], where the given question and a set of answer candidates are analogous
to a query and a set of relevant entities. Hence, our task is transformed to find an optimal
ranking order of these answer candidates according to their relevance to a given question.
We choose the AdaRank[51] and LambdaMART [7] as the baseline learning-to-rank meth-
ods for our task. We used the positive, neutral+ as the target value to define the order of
each example. This is reasonable, because the label establishment is part of our model, and
the heuristic rules for setting up the neutral− and negative samples are never used before.

• Traditional Classifiers. Recently Calefato et al. [9] proposed to approach the best answer-
prediction problem as a binary-classification task, and in their work they assessed 26 best-
answer prediction classifiers in Stack Overflow. We choose the two most effective traditional
classifiers from their experimental results, xgbTree and RandomForest, for use in our study.
As they were doing binary classification, to adapt to our training data, we kept our positive
samples as positive and consider neutral+ samples as negative. Thereafter, we utilize the
classification models to generate an answer ranking list by pairwise comparison between
the answer candidates.

• AnswerBot. Xu et al. [50] proposed a framework called AnswerBot to generate an an-
swer summary for a non-factoid technical questions. Their user study showed a promising
performance for selecting salient answers by their method. We adapted their AnswerBot
approach for our task of recommending answers among a set of answer candidates. To be
more specific, for a given question, AnswerBot generates a ranked list of candidate answers
according to the ranking scores. This ranked list of answers is then used to calculate the
precision of answer selection results.

• IR-DeepAns. To verify the effectiveness of using clarifying questions as a way of question
boosting, compared with our sequence-to-sequence model, we also considered a simple IR-
based approach using similar clarifying questions as a query expansion mechanism. For
a given question qi , we first identified the most similar question qj in 〈q, cq〉 dataset, and
then retrieved the clarifying question cqj associated withqj . We applied IDF-weighted word
embedding methods to calculate the similarity score between two questions. We feed the qi

and cqj into our model and name this baseline as IR-DeepAns. This model is close to ours.

4.4 Evaluation Methods

4.4.1 Experiment Setup. To thoroughly evaluate our model, we conducted a large-scale auto-
matic evaluation experiment. We used IDF-weighted word embedding (described in Section 3.2) to
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calculate the similarity score between two question titles. For each testing QA pair 〈qt ,at 〉, we then
performed K-NN (K=5) to search for similar questions over the whole dataset for the given testing
question qt . We then constructed an answer candidate pool by gathering the top-five answers as-
sociated with these selected questions. Since the top-similar question extracted by K-NN is always
the original post itself, we can ensure that the accepted answer at paired with the original post
qt is always in the answer candidate pool. In other words, the answer candidate pool for testing
question qt contains five answers, one of which is the accepted answer at . In summary, for the
5,000 testing questions of each platform, we constructed 5,000 × 5 QA pairs in total to serve as the
final evaluation sets. Following this, for each testing question qt , we first applied the pre-trained
question boosting model to generate a clarifying question cqt . We then paired the given question
with each answer in the candidate pool to construct the 〈qt ⊕ cqt ,at 〉 pairs. The 〈qt ⊕ cqt ,at 〉 pair
was fitted into our model to calculate a matching score, and we then generated a ranking order
for each group of candidate answers according to their matching scores to the given question.

4.4.2 Evaluation Metrics. Since the evaluation answer candidate pool includes the accepted an-
swer, one way to evaluate our approach is to look at how often the accepted answer is ranked
higher up among members of the answer candidate pool. Thus, we adopted the widely accepted
metric, P@K and DCG@K to measure the ranking performance of our model.

• P@K is the precision of the best answer in top-K candidate answers. Given a question, if
one of the top-k ranked answers is the best answer, we consider the recommendation to be
successful and set success (besti ∈ topK ) to 1; otherwise, we consider the recommendation
to be unsuccessful and set success (besti ∈ topK ) to 0. The P@K metric is defined as follows:

P@K =
1

N

N∑
i=1

[success (besti ∈ topK )]. (14)

• DCG@K is another popular top-K accuracy metric that measures a recommender system
performance based on the graded relevance of the recommended items and their positions in
the candidate set. Different from P@K , the intuition of DCG@K is that highly ranked items
are more important than low-ranked items. According to this metric, a recommender system
gets a higher reward for ranking the correct answer at a higher position. The success (besti ∈
topK ) is same with the previous definition, while the rankbesti

is the ranking position of
the best answer i . The DCG@K is defined as follows:

DCG@K =
1

N

N∑
i=1

[success (besti ∈ topK )]

log2 (1 + rankbesti
)
. (15)

5 AUTOMATIC EVALUATION RESULTS

To gain a deeper understanding of the performance of our approach, we conducted an analysis
on our large-scale automatic evaluation results. Specifically, we mainly focus on the following
research questions:

• RQ-1: How effective is our approach under automatic evaluation?
• RQ-2: How effective is our use of Question boosting and Label establishing methods?
• RQ-3: How effective is our approach under different parameter settings?

5.1 RQ-1: Automatic Evaluation Results Analysis

The automatic evaluation results of our proposed model and aforementioned baselines over dif-
ferent technical Q&A sites are summarized in Table 4, Table 5, Table 6, and Table 7, respectively.
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Table 4. Automatic Evaluation (Ask Ubuntu)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5

RandomForest 26.6 ± 1.6% 49.2 ± 1.6% 70.8 ± 1.6% 87.1 ± 0.4% 40.9 ± 1.5% 51.7 ± 1.5% 58.8 ± 0.9% 63.7 ± 0.8%

XgbTree 28.8 ± 1.4% 53.6 ± 1.3% 73.0 ± 1.0% 87.9 ± 1.2% 44.5 ± 1.2% 54.2 ± 0.9% 60.7 ± 0.8% 65.3 ± 0.7%

LambdaMART 25.4 ± 1.1% 45.7 ± 1.0% 65.7 ± 1.2% 84.0 ± 1.0% 38.5 ± 1.0% 47.5 ± 1.1% 55.8 ± 0.9% 62.3 ± 0.6%

AdaRank 24.9 ± 1.1% 45.3 ± 1.1% 65.0 ± 1.0% 82.9 ± 0.8% 38.1 ± 1.2% 47.2 ± 1.1% 55.2 ± 1.0% 61.8 ± 0.7%

AnswerBot 27.7 ± 1.6% 52.1 ± 1.5% 73.5 ± 1.0% 89.2 ± 0.7% 43.1 ± 1.5% 53.8 ± 1.1% 60.5 ± 0.8% 64.7 ± 0.8%

DeepAns-IR 37.2 ± 2.0% 59.9 ± 2.1% 77.5 ± 1.7% 92.0 ± 1.0% 50.8 ± 1.5% 59.6 ± 1.3% 65.8 ± 1.1% 68.7 ± 0.8%

DeepAns 40.9 ± 1.5% 61.7 ± 1.9% 77.9 ± 0.9% 92.0 ± 0.9% 54.0 ± 1.7% 62.1 ± 1.1% 68.2 ± 1.1% 71.3 ± 0.9%

Table 5. Automatic Evaluation (Super-User)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5

RandomForest 27.4 ± 1.6% 50.2 ± 1.7% 70.5 ± 1.4% 87.3 ± 0.9% 41.7 ± 1.6% 51.9 ± 1.4% 59.2 ± 1.2% 64.1 ± 0.9%

XgbTree 29.2 ± 1.6% 55.9 ± 1.3% 74.2 ± 0.9% 88.5 ± 0.7% 47.6 ± 1.2% 56.7 ± 1.1% 63.0 ± 0.9% 67.4 ± 0.8%

LambdaMART 25.9 ± 1.1% 47.1 ± 1.0% 66.1 ± 1.0% 84.5 ± 1.2% 39.8 ± 1.0% 48.8 ± 1.0% 56.4 ± 0.7% 62.9 ± 0.6%

AdaRank 25.1 ± 1.2% 46.2 ± 1.1% 65.7 ± 1.0% 84.1 ± 0.9% 38.4 ± 1.1% 47.6 ± 1.1% 55.7 ± 1.0% 62.2 ± 0.9%

AnswerBot 29.8 ± 1.4% 53.9 ± 1.2% 74.1 ± 1.3% 89.6 ± 0.8% 45.0 ± 1.2% 55.1 ± 0.9% 61.8 ± 0.7% 65.8 ± 0.6%

DeepAns-IR 38.8 ± 2.1% 63.4 ± 1.8% 80.7 ± 1.2% 92.5 ± 1.2% 54.3 ± 1.8% 63.0 ± 1.3% 68.1 ± 1.2% 70.9 ± 1.0%

DeepAns 40.7 ± 1.9% 65.8 ± 1.1% 82.2 ± 1.1% 93.9 ± 0.8% 56.5 ± 1.2% 64.7 ± 1.2% 69.8 ± 1.0% 72.1 ± 0.8%

Table 6. Automatic Evaluation (SO-Python)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5

RandomForest 34.0 ± 1.3% 57.2 ± 1.0% 74.8 ± 0.7% 89.7 ± 0.6% 48.6 ± 0.9% 57.4 ± 0.6% 63.9 ± 0.7% 67.8 ± 0.5%

XgbTree 35.4 ± 1.5% 58.4 ± 1.9% 74.2 ± 1.5% 88.7 ± 1.1% 49.9 ± 1.6% 57.8 ± 1.3% 64.1 ± 1.0% 68.4 ± 0.8%

LambdaMART 32.6 ± 1.7% 56.2 ± 2.2% 73.7 ± 1.7% 88.3 ± 0.8% 47.5 ± 1.9% 56.3 ± 1.7% 62.5 ± 1.2% 67.1 ± 1.0%

AdaRank 29.9 ± 1.3% 53.3 ± 1.1% 71.4 ± 0.9% 85.8 ± 0.8% 44.7 ± 1.1% 53.7 ± 0.8% 59.9 ± 0.8% 65.4 ± 0.6%

AnswerBot 31.8 ± 1.8% 52.8 ± 2.0% 71.6 ± 1.9% 88.7 ± 0.9% 44.5 ± 1.7% 54.3 ± 1.6% 62.6 ± 1.2% 68.1 ± 0.9%

DeepAns-IR 42.8 ± 1.3% 62.8 ± 1.9% 78.2 ± 2.0% 90.0 ± 0.9% 55.4 ± 1.6% 63.1 ± 1.6% 68.2 ± 1.0% 72.1 ± 0.8%

DeepAns 45.7 ± 1.6% 65.7 ± 1.6% 80.2 ± 1.9% 92.1 ± 1.2% 58.3 ± 1.4% 65.6 ± 1.3% 70.7 ± 1.1% 73.8 ± 0.8%

We do not report P@5 and DCG@1 in our tables, since DCG@1 is always equal to P@1, and P@5
will always be equal to 1. The best performing system for each column is highlighted in boldface.
As can be seen, our model outperforms all the other methods by a large margin in terms
of P@K score and DCG@K score. From the table, we can observe the following points discussed
below:

(1) Compared to traditional classifiers, such as xbgTree and RandomForest, one can clearly
see that our approach performs much better. For example, it improves over xgbTree on
P@1 by 42% on Ask Ubuntu dataset, and 39% on Super User datasets.

(2) Compared with the method proposed by Reference [9], which only has two kinds of la-
bels (positive and negative), our approach constructs four kinds of labeled data (positive,
neutral+, neutral−, negative) automatically via incorporating the label establishing process.
By introducing the neutral+ and neutral− training samples, our approach can learn how to
separate the best answer from the similar ones, which may explain the obvious advantage
of our model in P@1.
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Table 7. Automatic Evaluation (SO-Java)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5

RandomForest 32.9 ± 1.0% 56.1 ± 1.1% 74.1 ± 1.1% 89.5 ± 0.7% 47.6 ± 0.9% 56.6 ± 0.8% 63.2 ± 0.6% 67.2 ± 0.5%

XgbTree 35.9 ± 1.3% 59.0 ± 1.2% 75.7 ± 0.9% 89.1 ± 1.0% 50.5 ± 1.0% 58.8 ± 0.7% 64.6 ± 0.7% 68.8 ± 0.5%

LambdaMART 31.5 ± 1.2% 54.4 ± 1.2% 72.3 ± 1.7% 87.6 ± 1.3% 46.0 ± 0.8% 54.9 ± 1.1% 61.5 ± 0.7% 66.3 ± 0.5%

AdaRank 29.2 ± 2.1% 52.1 ± 2.2% 69.9 ± 1.8% 86.2 ± 1.5% 43.6 ± 1.8% 52.5 ± 1.7% 59.6 ± 1.5% 64.9 ± 1.1%

AnswerBot 34.7 ± 1.5% 58.0 ± 2.1% 77.8 ± 1.9% 90.2 ± 1.5% 49.4 ± 1.6% 59.3 ± 1.5% 64.7 ± 1.1% 68.4 ± 0.8%

DeepAns-IR 42.3 ± 2.9% 63.7 ± 2.3% 78.3 ± 2.1% 91.8 ± 1.6% 55.7 ± 2.4% 63.1 ± 2.2% 68.9 ± 1.8% 72.1 ± 1.4%

DeepAns 45.5 ± 1.6% 65.9 ± 2.2% 79.9 ± 1.6% 92.0 ± 0.9% 58.4 ± 1.9% 65.4 ± 1.5% 70.6 ± 1.2% 73.7 ± 0.9%

(3) Our approach also outperforms the AnswerBot by a large margin. We attribute this to the
following reasons: First, by adding a clarifying question into our model, we can properly
fuse the information between the isolated question sentences and answers, which can re-
duce the lexical gap between them and better pair the answer with associated questions.
Second, we use two parallel convolutional neural network blocks to learn optimal vec-
tor representation of QA pairs that preserve important syntactic and semantic features.
To compute the matching score, we relate the rich representation features via a weakly
supervised way from the available training data.

(4) Compared to our model, the learning-to-rank–based approach achieved the worst per-
formance regarding the P@K and DCG@K scores with different depths. The learning-
to-rank approach ignores the fact that ranking is a prediction task on a list of objects.
Because they require a large number of training instances with ranking labels, therefore
if the ground truth ordering of input candidates is lacking, they are unable to capture the
relative preference between two QA pairs. This may explain the reason why its perfor-
mance is comparatively suboptimal.

(5) The DeepAns-IR approach has its advantage as compared to other baselines excluding
our proposed model. This is because DeepAns-IR employs the same data-labeling strat-
egy and the model structure as ours. Moreover, it also incorporates the IR-based approach
to expand the query with clarifying questions. This verifies the effectiveness of our model
for question and answering tasks in technical Q&A sites. The only difference between
DeepAns-IR and our model is that our model generates clarifying questions via deep
sequence-to-sequence learning, while the DeepAns-IR retrieves the clarifying questions
from the existing database according to a similarity score, which relies heavily on whether
similar questions can be found and how similar the questions are. This results in our
model’s superior performance as compared to the DeepAns-IR approach.

(6) By comparing the evaluation results of the different technical Q&A sites, i.e., Ask Ubuntu,
Super User, and Stack Overflow, we can see that our proposed model is stably and substan-
tially better than the other baselines. This suggests that our approach behaves consistently
across different technical Q&A platforms, regardless of the different topic of the specific
technical forums. This supports the likely generalization and robustness of our approach.
We also notice that the advantage of our proposed model is much more obvious on SO
(Python) and SO (Java) as compared to Ask Ubuntu and Super User. The reason for this
phenomenon is likely the large number of training samples from Stack Overflow, which
benefits the classification performance of our model.

In summary, our model substantially outperforms the baselines under automatic evaluation.
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Table 8. Ablation Evaluation (Ask Ubuntu)

Measure Drop CQ Drop Labeling DeepAns

P@1 34.2 ± 1.3% 31.3 ± 1.2% 40.9 ± 1.5%
P@2 58.9 ± 1.8% 50.5 ± 1.1% 61.7 ± 1.9%
P@3 77.3 ± 1.5% 68.9 ± 1.3% 77.9 ± 0.9%
P@4 91.4 ± 0.8% 86.0 ± 1.1% 92.0 ± 0.9%

DCG@2 49.8 ± 1.5% 43.4 ± 0.9% 54.0 ± 1.7%
DCG@3 59.5 ± 1.2% 51.7 ± 0.8% 62.1 ± 1.1%
DCG@4 65.8 ± 0.9% 59.1 ± 0.7% 68.2 ± 1.1%
DCG@5 68.5 ± 0.7% 64.5 ± 0.5% 71.3 ± 0.9%

Table 9. Ablation Evaluation (Super User)

Measure Drop CQ Drop Labeling DeepAns

P@1 35.8 ± 1.4% 29.7 ± 1.4% 40.7 ± 1.9%
P@2 60.2 ± 1.0% 53.9 ± 1.9% 65.8 ± 1.1%
P@3 79.6 ± 0.9% 72.5 ± 1.5% 82.2 ± 1.1%
P@4 92.1 ± 0.5% 89.5 ± 0.9% 93.9 ± 0.8%

DCG@2 51.2 ± 1.1% 45.0 ± 1.6% 56.5 ± 1.2%
DCG@3 60.9 ± 0.9% 54.0 ± 1.4% 64.7 ± 1.2%
DCG@4 66.3 ± 0.7% 61.4 ± 1.1% 69.8 ± 1.0%
DCG@5 69.3 ± 0.7% 65.6 ± 0.8% 72.1 ± 0.8%

5.2 RQ-2: Ablation Analysis

Ablation analysis is used to verify the effectiveness of the DeepAns using Question boosting and
Label establishing methods. More specifically, we compare our approach with several of its incom-
plete variants:

• Drop CQ: removes the clarifying question part generated by Question boosting model.
• Drop Labeling: removes the training samples generated by Label establishing model; to do

this, we keep the best QA pairs as positive samples and make other answer pairs as negative
samples. Our model was trained as a binary classification model.

We performed the ablation analysis experiment on Ask Ubuntu and Super User, respectively. The
ablation analysis results are presented in the Table 8 and Table 9. We can observe the following
points:

(1) By comparing the results of our approach with each of the variant model, we can see that
no matter which method we dropped, it does hurt the performance of our model. This
verifies the importance and effectiveness of these three mechanisms.

(2) By comparing the results of DeepAns with Drop CQ, it is clear that incorporating a
clarifying question improves the overall performance. When adding a clarifying question
to our model, the P@k score is improved by 19.5% and 13.9% on Ask Ubuntu and Super
User datasets, respectively. We attribute this to the useful clarifying question can reduce
the lexical gap between answer and questions, which can make the information properly
fused between them.
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Fig. 5. Sensitivity analysis on Ask Ubuntu (left) and Super User (right).

(3) By comparing the results of DeepAns with Drop Labeling, we can measure the perfor-
mance improvements achieved due to the incorporation of “Label establishment” process.
After removing the training samples constructed by Label establishment, there is a signif-
icant drop overall in every evaluation measure. This is because by employing our label
establishing process, the size of the training data is largely expanded; in the meanwhile,
by introducing neutral+ and neutral− samples, our model can learn to better distinguish
best answer from similar ones.

In summary, both the question boosting module and label establishing model are effective and help-
ful to enhance the performance of our approach.

5.3 RQ-3: Parameters Tuning

In this section, we tune the key parameters of our model for sensitivity analysis and robustness
analysis.

5.3.1 Sensitivity Analysis. We have four key parameters (i.e.,ωpos ,ωneu+,ωneu−,ωneд) in Equa-
tion (13). The optimal settings of these weights were carefully tuned on our dataset. We demon-
strate the weights tuning on Ask Ubuntu and Super User, respectively. In particular, the validation
set was leveraged to validate our model, and the grid search method was employed to select opti-
mal parameters between 0 and 10 with small but adaptive step sizes. The step sizes were 0.01, 0.1,
and 1 for the range of [0, 0.1], [0.1, 1], and [1, 10], respectively. The parameters tuning process was
varying one weight while fixing the other three weights. For example, to tune the parameterωneд ,
we fix the other three parameters and changeωneд from 0 to 10 with different step sizes. After that,
we fixωneд to its optimal settings for tuning other parameters. Figure 5 illustrates the performance
of our model with respect to different weights on Ask Ubuntu and Super User, respectively. From
the figure, we have the following observations:

(1) Even though the four parameters vary in a relatively wide range, the performance of our
proposed model DeepAns changes within small ranges near the optimal settings. This
indicates that our model is non-sensitive to the parameters around their optimal settings,
which further supports the generalization ability of our approach.

(2) We notice that most parameters achieve their best performance in the range of [1, 3], we
thus recommend to initialize the weights in Equation (13) to be around the above range,
which is close to the optimal settings of our model.

5.3.2 Robustness Analysis. In real-world Q&A sites, there is no guarantee to find the exactly
matched questions from the archive, especially when k is small. Therefore, we have to enlarge k
to improve the recall of the similar questions and hence the “matched answers.” However, a larger
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Fig. 6. Robustness analysis on Ask Ubuntu (left) and Super User (right).

k may introduce more noise into the answer candidate pool with more irrelevant answers. This
can then increase the difficulty of our answer recommendation task.

To verify the robustness of our proposed approach, we set different thresholds for the number of
returned questions by k-NN method. More specifically, we varied the number of returned similar
questions k from 6 to 10 and measured the performance of our approach. We then reported average
P@1-5 over each dataset under different parameter settings of k . The results of Ask Ubuntu and
Super User are shown in Figure 6. We can make the following observations:

(1) The trend in overall performance of our model decrease as k increases, which supports
our concern that larger k settings introduce more noises and bring bigger challenges for
our task. By analyzing the performance of our approach with respect to different k , we
notice that our approach achieves good performance when k varies from 5 to 7, while still
ensuring the “matched answer” is highly ranked. We thus recommend setting k within
the above range for real-world applications.

(2) The advantage of our proposed model is more obvious on P@1 compared with other
metrics(P@2 − 5). Even when we set k to 10, the performance of our model on P@1 is
still on a par with the best performance of other baselines, while k is set to 5 in these
baselines (See Table 4 and Table 5). This reveals that our model can perform well under a
noisy context, which shows the robustness of our model.

In summary, our model is non-sensitive and robust under different parameter settings.

6 USER STUDY SETUP AND RESULTS

Since automatic evaluation results do not always agree with the actual ranking preference of real-
world users, we also performed a small, qualitative user study to measure how humans actually
perceive the results produced by our approach. Specifically, we mainly focus on the following
research questions:

• RQ-4: How effective are the question boosting results of our approach under human
evaluation?

• RQ-5: How effective are the question-answering results of our approach under human
evaluation?

For human evaluation, we used the Ask Ubuntu and Stack Overflow (Python) platforms to per-
form our user study. We invited five evaluators to participate in our user study; all of these par-
ticipants have more than three years of studying/working experience in software development
process, have more than one year of experience using technical Q&A sites, and are familiar with
the Ubuntu system and Python programming languages. We did not limit the amount of time for
evaluators to complete the user study.
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Table 10. Human Evaluation of Question Boosting Results

Data Model Score(1)R Score(2)R Score(3)R AvgR Score(1)U Score(2)U Score(3)U AvgU

Ask

Ubuntu

IR-based 21.6% 43.2% 35.2% 2.14 28.8% 34.4% 36.8% 2.08

Ours 18.4% 32.8% 48.8% 2.30 22.4% 35.8% 42.4% 2.20

SO

(Python)

IR-based 19.2% 36.0% 44.8% 2.26 26.4% 32.0% 41.6% 2.15

Ours 17.6% 32.0% 50.4% 2.33 23.2% 29.6% 47.2% 2.24

6.1 RQ4: Human Evaluation on Question Boosting Results

To gain a deeper understanding of how the clarifying questions impact the results in our study,
we conducted human evaluation studies to measure how humans perceive the question boosting
results. To do this, we consider two modalities in our user study: Relevance and Usefulness. Rel-
evance measures how relevant the clarifying question is to the original question title. Usefulness
measures how useful the clarifying question is for adding missing information for the original
post. We randomly sampled 25 〈q,a〉 pairs from Ask Ubuntu and SO (Python), respectively. For
each question, we provided two clarifying questions. One was generated by our approach, the
other was generated by the IR-based approach, i.e., DeepAns-IR. We also provided the accepted
answer to the question as a reference. We asked the participants to manually rate the generated
clarifying questions on a scale between 1 and 3 (1 = worst, 3 = best) across the above modalities.
The volunteers were blinded as to which question title was generated by our approach.

Evaluation Results. We obtained 125 groups of scores from evaluators for Ask Ubuntu and SO
(Python), respectively. Each group contains two pairs of scores, which were rated for clarifying
questions produced by IR-based approach and ours. Each pair contains a score for the Relevance
modality and a score for Usefulness modality. The score distribution and average score of Relevance
and Usefulness across the two methods are presented in Table 10. From the table, we can observe
the following points:

(1) Our approach performs better than the IR-based approach on both modalities. We at-
tribute this to the following reason: the IR-based approach relies heavily on whether sim-
ilar clarifying questions can be retrieved from the existing 〈q, cq〉 dataset. Considering the
complexity of the questions in technical Q&A sites, there may exist only a few questions
that are very similar to the given one, hence it is difficult to retrieve relevant clarifying
questions from the training set.

(2) Both the IR-based approach and our approach can produce relevant and useful clarifying
questions for the given question. This further verifies the clarifying question is helpful in
adding missing information and reducing the gap between questions and answers. We also
notice that there are still quite a few questions that received low scores for Relevance and
Usefulness modalities. Even though the clarifying questions generated by our approach
are still not perfect, our study is the first step on this topic and we also release our data to
inspire follow-up work for utilizing the clarifying questions.

Evaluation Examples. A major challenge for question-answering tasks is the semantic gap be-
tween the questions and answers. This is because the questions from technical Q&A sites are, more
often than not, very specific and complex, and oriented towards expert professional answers. To
fill the gap between question and answers, we employ a deep encoder-decoder model to generate
a clarifying question for a given post as a way of question boosting. Figure 7 presents three exam-
ples of human evaluation on question boosting results (the words that appear in both clarifying
questions and answers are highlighted). From these cases, we can see that:
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Fig. 7. Evaluation examples of question boosting.

(1) The clarifying questions produced by our approach as well as the IR-based approach gen-
erally perform well across both modalities. It is clear that the clarifying question can re-
duce the lexical gap between the answer and the questions, which can add missing in-
formation and make the information better linked between question and answers. For
example, in the first and second case, our approach generates “xdg-open” and “sudo apt-
get install” for the clarifying questions, which also appear in the answers. Thus, the added
information can eliminate and/or reduce the isolation between questions and answers. We
attribute this to the advantage of our model for learning common patterns automatically
from the 〈q, cq〉 pairs.

(2) Not all the clarifying questions are appreciated by the evaluators; an example is shown in
the last row of Figure 7. For such cases, even though the generated clarifying question is
not optimal to the participants, our approach still precisely replicates the salient tokens,
i.e., “thunderbird” from the question title, which also increases the likelihood of selecting
the right answer from answer candidates.

In summary, the clarifying questions generated by our approach are effective under human eval-
uation results.

6.2 RQ5: Human Evaluation on Question-answering Results

Since the final goal of our study is recommending relevant answers to developers, we also per-
formed a human evaluation to measure the effectiveness of question-answering results with re-
spect to human developers. To be more specific, we measured how developers perceive the answers
produced by our approach to solved questions, unresolved questions, and unanswered questions.
For solved questions, we compared our approach with the ground truth; for unresolved questions,
we compared our approach with xgbTree and Answerbot methods; and for unanswered questions,
we compared our approach with Stack Exchange search engine and Google search engine.

6.2.1 User Study on Solved Questions. To investigate the agreement of the developers on solved
questions, we randomly sampled 25 examples of solved questions from the testing set of Ask
Ubuntu and SO (Python), respectively. For each solved question, we provided two answer can-
didates. One answer was the accepted answer—we refer to it as the ground truth in this study. The
other answer was produced by our approach. After that, each evaluator was asked to manually
rate on the two answer candidates from 1 to 3, according to the acceptance of the answer. Score
3 means that the evaluator strongly agrees with the acceptance of the answer, and score 0 means
that the evaluator strongly disagrees with the acceptance of the answer. It is worth emphasizing
that the answer selected by our approach may actually be the same with the ground truth answer,
and the participants were blinded as to which answer is the ground truth.
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Table 11. Human Evaluation - Ask Ubuntu

Type Approach Score(1) Score(2) Score(3) Rankavд

Solved
Ground Truth 7.2% 18.4% 74.4% 2.67

DeepAns 19.2% 32.8% 48.0% 2.29

Unresolved
xgbTree 15.2% 26.4% 58.4% 2.43

AnswerBot 12.8% 28.0% 59.2% 2.46
DeepAns 12.0% 23.2% 64.8% 2.53

Unanswered
SE Engine 51.2% 33.6% 15.2% 1.64

Google 25.6% 32.8% 41.6% 2.16
DeepAns 22.4% 30.4% 47.2% 2.25

Table 12. Human Evaluation - SO (Python)

Type Approach Score(1) Score(2) Score(3) Rankavд

Solved
Ground Truth 5.6% 14.4% 80.0% 2.74

DeepAns 18.4% 31.2% 50.4% 2.32

Unresolved
xgbTree 12.0% 26.4% 61.6% 2.50

AnswerBot 9.6% 32.0% 58.4% 2.49
DeepAns 10.4% 21.6% 68.0% 2.58

Unanswered
SE Engine 54.4% 32.0% 13.6% 1.59

Google 30.4% 31.2% 38.4% 2.08
DeepAns 26.4% 28.0% 45.6% 2.19

Evaluation Results. We collected 125 groups of scores from participants for Ask Ubuntu and
SO (Python), respectively. Each group contains two scores, which were rated for answers of the
ground truth and ours. We count the proportion of different scores and calculate the average score
for each method. The evaluation results for Ask Ubuntu and SO (Python) are presented in Table 11
and Table 12, respectively. From the table, we can observe the following points:

(1) The evaluators are in agreement with acceptance of the ground truth answers for most
cases. For example, around 75% of the ground truth answers in Ask Ubuntu and 80% an-
swers in SO (Python) are appreciated by the volunteers.

(2) The ground truths are better than our approach. This is reasonable, because the ground
truth answers are usually high-quality answers that have been accepted by the developers.
Even though our approach is not as good as the ground truth at the current stage, we
observe that a small number of answers produced by our approach are marked with score
1. This indicates that the answers selected by our approach are meaningful and acceptable
for the majority of questions.

Evaluation Examples. Figure 8 shows three examples of the user study on solved questions.
It can be seen that:

(1) In general, our approach can produce acceptable answers. Sometimes, the answers cho-
sen by our approach are actually more accepted by the volunteers than the ground truth
answers. For example, in the first sample, three evaluators gave a score of 3 to the ground
truth answer, while four evaluators gave a score of 3 to ours. However, our answer does
not belong to the current question thread and is selected from answer candidates of other

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 1, Article 11. Pub. date: December 2020.



11:26 Z. Gao et al.

Fig. 8. Examples of Solved Questions.

questions (e.g., Python: duplicating each element in a list). This further justifies the feasi-
bility of addressing answer-hungry problem by selecting answers from the historical QA
dataset.

(2) Outputs from our model are not always “correct.” For example, in the last sample, the in-
formation seeker asks a question of “Can I download Ubuntu 12.04 on a notebook/laptop?”
while the answer provided by our approach is about how to download a file from the pack-
ages. This example reveals that considering the complexity of the questions in technical
Q&A sites, the gap between the ground truth answers and ours is still large, and hence
there is still much room for our question-answering system to be further improved.

6.2.2 User Study on Unresolved Questions. To investigate how developers perceive our ap-
proach to solve the unresolved questions, we sampled 25 unresolved questions for Ask Ubuntu
and SO (Python), respectively. Each question has multiple answer candidates that have not been
selected as Accept. By computing the matching score between question and each answer candi-
date, we can identify a best answer via our approach, xgbTree and Answerbot, respectively (note
that different approaches may choose the same answer as the best answer). Following that, we ask
each evaluator to rank three answer candidates produced by our approach, xgbTree and Answer-
bot from 1 to 3 (3 is the best) according to the acceptance of the answer. It is worth emphasizing
that the answers identified by our approach and others could be the same, and the order of the
answers is randomly decided.

Evaluation Results. The human evaluation results of unresolved questions for Ask Ubuntu
and SO (Python) are presented in Table 11 and Table 12, respectively. From the table, we can see
that:

(1) Our model performs better than xgbTree and Answerbot baselines. This further indicates
that the answers selected by our approach are more appreciated by evaluators. The results
of human evaluation on unresolved questions are consistent with large-scale automatic
evaluation results, which reconfirms the effectiveness of our approach for identifying the
best answer in unresolved questions.

(2) Compared with the evaluation results of ground truth, the average scores between the
answers of unresolved questions and solved questions are close, which supports our pre-
vious assumption that it is not uncommon for users to forget to mark the accepted answer
in technical Q&A sites.
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Fig. 9. Examples of unresolved questions.

Evaluation Examples. Figure 9 shows the examples of the user study on unresolved questions.
It can be seen that:

(1) The overall answer quality for the unresolved questions is good. This is because these
answers are directly related to the specific problems of the questions, which are more
suitable to the needs of information seekers.

(2) Even all the answer candidates of an unresolved question aim at solving the same problem.
As can be seen, some answers identified by our approach stand out from the rest and are
more appreciated by evaluators, such as samples 1–2. This further verifies the ability of
our approach to select the most relevant answer from a set of answer candidates.

6.2.3 User Study on Unanswered Questions. Similar to unresolved questions, We also randomly
sampled 25 examples of unanswered questions for Ask Ubuntu and SO(Python), respectively. For
each unanswered question, considering that developers usually search for technical help using
Google search engine and/or the Q&A site search engine itself, we compare our approach against
two baselines built based on the above search engines, respectively. We used the question title
of the post as the search query. For Google search engine, we add “site:stackoverflow.com” and
“site:askubuntu.com” to the end of the search query so that it searches only posts on Stack Over-
flow and Ask Ubuntu, respectively. We use the first-ranked question returned by Google search
engine as the most relevant question, and we extracted the accept answer or the answer with
the highest vote if there is no accepted answer of the relevant question. For technical Q&A site
search engine, we refer to the first-ranked related question recommended by the technical Q&A
site search engine as the most relevant question and extracted the associated accepted answer
or the highest-vote answer. After constructing the evaluation set for unanswered questions, for
each unanswered question, we asked the evaluators to rank on the three answer candidates from
1 to 3 (3 for the best answer), The higher grade indicates that the answer is more suitable to the
given question. Please note that the participants do not know which answer is generated by which
approach.

Evaluation Results. The expert evaluation results of unanswered questions for Ask Ubuntu
and SO (Python) are presented in Table 11 and Table 12. We can observe the following points:

(1) Compared with baselines, our model outperforms SE (Stack Exchange search engine) and
Google (Google search engine). This suggests that the answers produced by our approach
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Fig. 10. Examples of unanswered questions.

are considered to be more suitable to the given question by the evaluators. We attribute
this to the reason that Google search engine identifies the answer via searching from sim-
ilar questions, thus it is unable to judge the matching degree between the questions and
answers. In contrast, our approach estimates the matching score using the context infor-
mation of the QA pair, which fills the gap between questions and answers. The superior
performance of our approach in terms of average score further supports the effectiveness
of our approach in identifying the best answer.

(2) For the unanswered questions, a gap for the answer quality between unanswered
questions and solved/unresolved questions still exists. We also notice that our ap-
proach received more low scores (score = 1) with unanswered questions as compared to
solved/unresolved questions. This is because in technical Q&A sites, some questions are
rather complicated and sophisticated, and it is hard to find suitable question-specific an-
swers for these questions.

Evaluation Examples. Figure 10 shows three examples of the user study on unanswered ques-
tions. We can observe the following points:

(1) The search engine of the technical Q&A site achieves worst performance. For example, in
sample 1 and sample 2, the SE search engine recommends the same answer to two differ-
ent questions. This is why the evaluators give comparatively low scores to the answers
identified by SE search engine.

(2) Our approach has its advantage as compared to the Google search engine (e.g., samples 1–
2). This is because the Google search engine does not consider the contextual information
between the questions and answers, but instead only identifies the answers based solely
by searching for similar questions. By contrast, our approach takes the question as well
as the candidate answers and calculates the matching score between the question and the
answers, which results in its superior performance compared to the other baselines.
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(3) In technical Q&A sites, some question titles are relatively abstract and uninformative. For
example, in sample 3, even though the answer selected by our approach is relevant and
meaningful, we can not make sure the answer solves the actual problem or not. For such
cases, more detailed information, such as the description in the question body, could be
considered when searching for appropriate answers.

In summary, our model is comparatively effective under human evaluation for question-
answering tasks in technical Q&A sites.

7 DISCUSSION

In this section, we first discuss the strength of our approach as well as the threats to validity of
our work; after, we analyze the outlier cases involving in our data creation process.

7.1 Strength of Our Approach

To address the answer-hungry problem in technical Q&A sites, we propose a deep learning–
based approach DeepAns to search relevant answers from historical QA pairs. We summarized
the strength of our approach as follows:

7.1.1 Neural Language Model for Question Boosting. One advantage of our approach is train-
ing an attentional sequence-to-sequence model for generating clarifying questions as a way of
question boosting. Instead of searching similar clarifying questions, our approach builds a neural
language model for linking semantics of question and clarifying questions. The neural language
model is able to handle the uncertainty in the correspondence between the questions and clarify-
ing questions. Our approach automatically learns common patterns automatically from the 〈q, cq〉
pairs. The encoder itself is a neural language model that is able to remember the likelihood of
different kinds of questions. Following that, the decoder learns the context of the questions and
fills the gap between the questions and clarifying questions.

7.1.2 Label Establishment for Data Augmentation. Due to the reason of the professional ques-
tions in technical Q&A sites, it is thus very hard, if not impossible, to find experts and annotators
for manual labeling the QA pairs. In this article, we present a novel labeling scheme to auto-
matically construct positive, neutral+, neutral−, and negative training samples. Guided by our four
heuristic rules, this label establishment process can collect large amounts of labeled QA pairs,
which greatly saves the time-consuming and labor-intensive labeling process.

7.1.3 Deep Neural Network for Answer Recommendation. We present a weakly supervised neu-
ral network for the answer recommendation task in technical Q&A sites. Our model architecture
is able to incorporate the aforementioned four types of training samples for ranking QA pairs. Our
work first uses the deep neural network to solve the problem of best answer selection in tech-
nical Q&A sites, which is able to alleviate the answer-hungry phenomenon that widely exists in
technical Q&A forums.

7.2 Threats to Validity

We have identified the following threats to validity among our study:
Internal Validity. Threats to internal validity are concerned with potential errors in our code

implementation and study settings. For the automatic evaluation, to reduce errors, we have double-
checked and fully tested our source code. We have carefully tuned the parameters of the baseline
approaches and used them in their highest performing settings for comparison, but there may still
exist errors that we did not note. Considering such cases, we have published our source code and
dataset to facilitate other researchers to replicate and extend our work.
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External Validity. The external validity relates to the quality and generalizability of our
dataset. Our dataset is constructed from the official StackExchange data dump. We focus on three
technical Q&A sites, i.e., Ask Ubuntu, Super User, and Stack Overflow, for our experiment. These
three technical Q&A sites are commonly used by software developers and each one focuses on a
specific area. However, there are still many other technical Q&A sites in StackExchange that are
not considered in our study (e.g., Server Fault). We believe that our results will generalize to other
technical Q&A sites as well, due to the ability of our approach to identify the best answer from
a set of answer candidates. We will try to extend our approach to other technical Q&A sites to
benefit more users in future studies.

Construct Validity. The construct validity concerns the relation between theory and obser-
vation. In this study, such threats are mainly due to the suitability of our evaluation measures.
For human evaluation, the subjectiveness of the evaluators, the evaluators’ degree of carefulness,
and the human errors may affect the validity of judgements. We minimized such threats by choos-
ing experienced participants who have at least three years of studying/working experience in the
software development process and are familiar with Ubuntu system and Python programming
languages. We also gave the participants enough time to complete the evaluation tasks.

Model Validity. The model validity relates to model structure that could affect the learning
performance of our approach. In this study, for the answer recommendation task, we choose a
CNN-based model due to the optimum results achieved by Reference [32]. Recent studies [33, 54]
have shown that the RNN-based model can also achieve promising performance on the text classi-
fication task, which is similar to ours. For the question boosting task, we use the vanilla sequence-
to-sequence model. Recent research has proposed new models, such as the pointer-generator [43],
transformer [48] and BERT [13]. However, our results do not shed light on the effectiveness of
employing other deep learning models with respect to different structures and new advanced fea-
tures. We will try to use other deep learning models for our tasks in future work and compare
them to those we report in this article.

7.3 Outlier Cases Study

As detailed in Section 3.2, we build our training samples via four heuristic rules, we thus can not
ensure that there are no outlier cases distant from our heuristic rules. The outlier cases will produce
a series of wrong preference pairs and hinder the learning performance of our model. Figure 11
shows three outlier examples for label establishment. From the figure we can see that:

(1) From the first example, it can be seen that the quality of its non-accept answer in terms
of informativeness and relevance are better than the accepted ones—not to mention that
the link provided within the Positive sample has not been available. This shows the outlier
case that the non-accepted answers may be better than the accepted answers.

(2) From the second example, it can be seen that, for a given question, the answers from its
similar questions are more descriptive than its own. This shows the outlier cases that the
answers of other questions may be better than its own.

(3) From the last example, it can be seen that the answers from its similar questions may
provide more information cues than its non-accepted answers.

Detecting and removing these outlier cases before building the training samples will benefit the
learning performance of our proposed DeepAns model; we will focus on this research direction in
the future.
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Fig. 11. Outlier Examples in Label Establishment.

8 RELATED WORK

In this section, we describe the related studies on best answer retrieval, query expansion in soft-
ware engineering, and deep learning in software engineering.

8.1 Best Answer Retrieval

Great effort has been dedicated to addressing the question-answering tasks on Q&A sites [1, 8, 9, 28,
39, 41, 47, 53]. Conventional techniques for retrieving answers primarily focus on complementary
features of the Q&A sites. For example, Adamic et al. [1] reported the first study on best answer
prediction in Yahoo! Answers using user-related features. Following Adamic et al.’s study, Tian
et al. [47] trained a classifier on a dataset from Stack Overflow without relying on user-related
features. Recently, Calefato et al. [9] modelled the answer prediction task as a binary classification
problem; they assessed 26 best answer prediction models in Stack Overflow. Different from these
works, we present a novel weakly supervised neural network architecture for ranking answers for
a given question. To the best of our knowledge, our work is the first to apply deep neural network
to the specific problem of best answer selection in Q&A sites. Our approach can not only identify
best answers from a list of candidate answers, but it can also recommend the most relevant answers
for these unanswered posts. Besides, we also compare with Calefato et al.’s [9] approach, and the
experimental results have shown that the improvement is substantial.

8.2 Query Expansion in SE

Query expansion has long been investigated as a way to improve the results returned by a search
engine [4, 22, 23, 26, 35, 37, 38, 40, 50]. Some software-engineering researchers have employed
query expansion to improve the performance of tasks such as code search, answer summary, and
similar question recommendation. For example, Haiduc et al. [22] proposed an approach that can
recommend a good query reformulation strategy by performing machine learning on a set of his-
torical queries and relevant results. Hill et al. [23] proposed a query expansion tool named Con-
quer, which introduces a novel natural language–based approach to organize and present search
results and suggest alternative query words. More recently, Lu et at. [37] presented an approach
to expand the original query with synonyms from WordNet, which can help developers to quickly
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reformulate a better query. Xu et al. [50] proposed a novel framework to reformulate the answer
in Stack Overflow to reduce the lexical gap between question and answer sentences. Inspired by
these studies, we also leverage the idea of query expansion to recommend the relevant answers.
Our DeepAns tool generates useful clarifying questions as a way of query boosting, which can
substantially reduce the lexical gap between the question and answer sentences. In contrast, all of
the aforementioned studies ignore the interactions between the asker and the potential helper.

8.3 Deep Learning in SE

Recently, an interesting direction in software engineering is to use deep learning to solve many
diverse software-engineering tasks [3, 10, 14–16, 18, 20, 21, 24, 25, 30, 31, 34, 36, 45, 49, 52]. For
example, White et al. [49] leverage a deep learning approach, DeepRepair, for automatic program
repairing. Gu et al. [20] propose a novel deep neural network named DeepCS for code search tasks,
where code snippets semantically related to a query can be effectively retrieved. Hu et al. [24] de-
velop a new sequence-to-sequence model named DeepCom to automatically generate code com-
ments for Java methods. Li et al. [34] present CClearner, which is a deep learning–based approach
for clone detection.

Although the aforementioned studies have utilized deep learning techniques for different kinds
of software engineering tasks, to our best knowledge, no one has yet considered the relevant an-
swer recommendation task in technical Q&A sites. We proposed in this article a novel neural
network architecture to address the answer-hungry problems in technical Q&A forums.

9 SUMMARY

To alleviate the answer-hungry problem in technical Q&A sites, we have presented a novel neural
network–based tool, DeepAns, to identify the most relevant answer among a set of answer can-
didates. Our model follows a three-stage process:question boosting, label establishing, and answer
recommendation. Given a post, we first generate a clarifying question as a way of question boost-
ing, we then automatically generate positive, neutral+, neutral−, and negative training samples via
label establishing. Finally, based on the four kinds of training samples we generated, we trained
a weakly supervised neural network to compute the matching score between the question and
candidate answers. Extensive experiments on the real-world technical Q&A sites have compar-
atively demonstrated the promising performance and the robustness of our approach in solving
unanswered/unresolved questions.
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